Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan D. G. Jones is active.

Publication


Featured researches published by Jonathan D. G. Jones.


Nature | 2006

The plant immune system.

Jonathan D. G. Jones; Jeffery L. Dangl

Many plant-associated microbes are pathogens that impair plant growth and reproduction. Plants respond to infection using a two-branched innate immune system. The first branch recognizes and responds to molecules common to many classes of microbes, including non-pathogens. The second responds to pathogen virulence factors, either directly or through their effects on host targets. These plant immune systems, and the pathogen molecules to which they respond, provide extraordinary insights into molecular recognition, cell biology and evolution across biological kingdoms. A detailed understanding of plant immune function will underpin crop improvement for food, fibre and biofuels production.


Nature | 2001

Plant pathogens and integrated defence responses to infection

Jeffery L. Dangl; Jonathan D. G. Jones

Plants cannot move to escape environmental challenges. Biotic stresses result from a battery of potential pathogens: fungi, bacteria, nematodes and insects intercept the photosynthate produced by plants, and viruses use replication machinery at the hosts expense. Plants, in turn, have evolved sophisticated mechanisms to perceive such attacks, and to translate that perception into an adaptive response. Here, we review the current knowledge of recognition-dependent disease resistance in plants. We include a few crucial concepts to compare and contrast plant innate immunity with that more commonly associated with animals. There are appreciable differences, but also surprising parallels.


Nature | 2003

Reactive oxygen species produced by NADPH oxidase regulate plant cell growth.

Julia Foreman; Vadim Demidchik; John H. Bothwell; Panagiota Mylona; Henk Miedema; Miguel Angel Torres; Paul Linstead; Silvia Costa; Colin Brownlee; Jonathan D. G. Jones; Julia M. Davies; Liam Dolan

Cell expansion is a central process in plant morphogenesis, and the elongation of roots and root hairs is essential for uptake of minerals and water from the soil. Ca2+ influx from the extracellular store is required for (and sets the rates of) cell elongation in roots. Arabidopsis thaliana rhd2 mutants are defective in Ca2+ uptake and consequently cell expansion is compromised—rhd2 mutants have short root hairs and stunted roots. To determine the regulation of Ca2+ acquisition in growing root cells we show here that RHD2 is an NADPH oxidase, a protein that transfers electrons from NADPH to an electron acceptor leading to the formation of reactive oxygen species (ROS). We show that ROS accumulate in growing wild-type (WT) root hairs but their levels are markedly decreased in rhd2 mutants. Blocking the activity of the NADPH oxidase with diphenylene iodonium (DPI) inhibits ROS formation and phenocopies Rhd2-. Treatment of rhd2 roots with ROS partly suppresses the mutant phenotype and stimulates the activity of plasma membrane hyperpolarization-activated Ca2+ channels, the predominant root Ca2+ acquisition system. This indicates that NADPH oxidases control development by making ROS that regulate plant cell expansion through the activation of Ca2+ channels.


Science | 2006

A plant miRNA contributes to antibacterial resistance by repressing auxin signaling.

Lionel Navarro; Patrice Dunoyer; Florence Jay; Benedict Arnold; Nihal Dharmasiri; Mark Estelle; Olivier Voinnet; Jonathan D. G. Jones

Plants and animals activate defenses after perceiving pathogen-associated molecular patterns (PAMPs) such as bacterial flagellin. In Arabidopsis, perception of flagellin increases resistance to the bacterium Pseudomonas syringae, although the molecular mechanisms involved remain elusive. Here, we show that a flagellin-derived peptide induces a plant microRNA (miRNA) that negatively regulates messenger RNAs for the F-box auxin receptors TIR1, AFB2, and AFB3. Repression of auxin signaling restricts P. syringae growth, implicating auxin in disease susceptibility and miRNA-mediated suppression of auxin signaling in resistance.


Nature | 2004

Bacterial disease resistance in Arabidopsis through flagellin perception

Cyril Zipfel; Silke Robatzek; Lionel Navarro; Jonathan D. G. Jones; Georg Felix; Thomas Boller

Plants and animals recognize microbial invaders by detecting pathogen-associated molecular patterns (PAMPs) such as flagellin. However, the importance of flagellin perception for disease resistance has, until now, not been demonstrated. Here we show that treatment of plants with flg22, a peptide representing the elicitor-active epitope of flagellin, induces the expression of numerous defence-related genes and triggers resistance to pathogenic bacteria in wild-type plants, but not in plants carrying mutations in the flagellin receptor gene FLS2. This induced resistance seems to be independent of salicylic acid, jasmonic acid and ethylene signalling. Wild-type and fls2 mutants both display enhanced resistance when treated with crude bacterial extracts, even devoid of elicitor-active flagellin, indicating the existence of functional perception systems for PAMPs other than flagellin. Although fls2 mutant plants are as susceptible as the wild type when bacteria are infiltrated into leaves, they are more susceptible to the pathogen Pseudomonas syringae pv. tomato DC3000 when it is sprayed on the leaf surface. Thus, flagellin perception restricts bacterial invasion, probably at an early step, and contributes to the plants disease resistance.


The EMBO Journal | 2003

NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in arabidopsis

June M. Kwak; Izumi C. Mori; Zhen-Ming Pei; Nathalie Leonhardt; Miguel Angel Torres; Jeffery L. Dangl; Rachel E. Bloom; Sara Bodde; Jonathan D. G. Jones; Julian I. Schroeder

Reactive oxygen species (ROS) have been proposed to function as second messengers in abscisic acid (ABA) signaling in guard cells. However, the question whether ROS production is indeed required for ABA signal transduction in vivo has not yet been addressed, and the molecular mechanisms mediating ROS production during ABA signaling remain unknown. Here, we report identification of two partially redundant Arabidopsis guard cell‐expressed NADPH oxidase catalytic subunit genes, AtrbohD and AtrbohF, in which gene disruption impairs ABA signaling. atrbohD/F double mutations impair ABA‐induced stomatal closing, ABA promotion of ROS production, ABA‐induced cytosolic Ca2+ increases and ABA‐ activation of plasma membrane Ca2+‐permeable channels in guard cells. Exogenous H2O2 rescues both Ca2+ channel activation and stomatal closing in atrbohD/F. ABA inhibition of seed germination and root elongation are impaired in atrbohD/F, suggesting more general roles for ROS and NADPH oxidases in ABA signaling. These data provide direct molecular genetic and cell biological evidence that ROS are rate‐limiting second messengers in ABA signaling, and that the AtrbohD and AtrbohF NADPH oxidases function in guard cell ABA signal transduction.


Cell | 2006

Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation.

Cyril Zipfel; Gernot Kunze; Delphine Chinchilla; Anne Caniard; Jonathan D. G. Jones; Thomas Boller; Georg Felix

Higher eukaryotes sense microbes through the perception of pathogen-associated molecular patterns (PAMPs). Arabidopsis plants detect a variety of PAMPs including conserved domains of bacterial flagellin and of bacterial EF-Tu. Here, we show that flagellin and EF-Tu activate a common set of signaling events and defense responses but without clear synergistic effects. Treatment with either PAMP results in increased binding sites for both PAMPs. We used this finding in a targeted reverse-genetic approach to identify a receptor kinase essential for EF-Tu perception, which we called EFR. Nicotiana benthamiana, a plant unable to perceive EF-Tu, acquires EF-Tu binding sites and responsiveness upon transient expression of EFR. Arabidopsis efr mutants show enhanced susceptibility to the bacterium Agrobacterium tumefaciens, as revealed by a higher efficiency of T-DNA transformation. These results demonstrate that EFR is the EF-Tu receptor and that plant defense responses induced by PAMPs such as EF-Tu reduce transformation by Agrobacterium.


Plant Molecular Biology | 2009

Role of plant hormones in plant defence responses

Rajendra Bari; Jonathan D. G. Jones

Plant hormones play important roles in regulating developmental processes and signaling networks involved in plant responses to a wide range of biotic and abiotic stresses. Significant progress has been made in identifying the key components and understanding the role of salicylic acid (SA), jasmonates (JA) and ethylene (ET) in plant responses to biotic stresses. Recent studies indicate that other hormones such as abscisic acid (ABA), auxin, gibberellic acid (GA), cytokinin (CK), brassinosteroids (BR) and peptide hormones are also implicated in plant defence signaling pathways but their role in plant defence is less well studied. Here, we review recent advances made in understanding the role of these hormones in modulating plant defence responses against various diseases and pests.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response

Miguel Angel Torres; Jeffery L. Dangl; Jonathan D. G. Jones

Reactive oxygen intermediates (ROI) are strongly associated with plant defense responses. The origin of these ROI has been controversial. Arabidopsis respiratory burst oxidase homologues (rboh genes) have been proposed to play a role in ROI generation. We analyzed lines carrying dSpm insertions in the highly expressed AtrbohD and AtrbohF genes. Both are required for full ROI production observed during incompatible interactions with the bacterial pathogen Pseudomonas syringae pv. tomato DC3000(avrRpm1) and the oomycete parasite Peronospora parasitica. We also observed reduced cell death, visualized by trypan blue stain and reduced electrolyte leakage, in the Atrboh mutants after DC3000(avrRpm1) inoculation. However, enhanced cell death is observed after infection of mutant lines with P. parasitica. Paradoxically, although atrbohD mutation eliminated the majority of total ROI production, atrbohF mutation exhibited the strongest effect on cell death.


Nature | 2007

A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence

Delphine Chinchilla; Cyril Zipfel; Silke Robatzek; Birgit Kemmerling; Thorsten Nürnberger; Jonathan D. G. Jones; Georg Felix; Thomas Boller

Plants sense potential microbial invaders by using pattern-recognition receptors to recognize pathogen-associated molecular patterns (PAMPs). In Arabidopsis thaliana, the leucine-rich repeat receptor kinases flagellin-sensitive 2 (FLS2) (ref. 2) and elongation factor Tu receptor (EFR) (ref. 3) act as pattern-recognition receptors for the bacterial PAMPs flagellin and elongation factor Tu (EF-Tu) (ref. 5) and contribute to resistance against bacterial pathogens. Little is known about the molecular mechanisms that link receptor activation to intracellular signal transduction. Here we show that BAK1 (BRI1-associated receptor kinase 1), a leucine-rich repeat receptor-like kinase that has been reported to regulate the brassinosteroid receptor BRI1 (refs 6,7), is involved in signalling by FLS2 and EFR. Plants carrying bak1 mutations show normal flagellin binding but abnormal early and late flagellin-triggered responses, indicating that BAK1 acts as a positive regulator in signalling. The bak1-mutant plants also show a reduction in early, but not late, EF-Tu-triggered responses. The decrease in responses to PAMPs is not due to reduced sensitivity to brassinosteroids. We provide evidence that FLS2 and BAK1 form a complex in vivo, in a specific ligand-dependent manner, within the first minutes of stimulation with flagellin. Thus, BAK1 is not only associated with developmental regulation through the plant hormone receptor BRI1 (refs 6,7), but also has a functional role in PRR-dependent signalling, which initiates innate immunity.

Collaboration


Dive into the Jonathan D. G. Jones's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge