Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kim E. Hammond-Kosack is active.

Publication


Featured researches published by Kim E. Hammond-Kosack.


Nature | 2010

Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium

Li-Jun Ma; H. Charlotte van der Does; Katherine A. Borkovich; Jeffrey J. Coleman; Marie Josée Daboussi; Antonio Di Pietro; Marie Dufresne; Michael Freitag; Manfred Grabherr; Bernard Henrissat; Petra M. Houterman; Seogchan Kang; Won Bo Shim; Charles P. Woloshuk; Xiaohui Xie; Jin-Rong Xu; John Antoniw; Scott E. Baker; Burton H. Bluhm; Andrew Breakspear; Daren W. Brown; Robert A. E. Butchko; Sinéad B. Chapman; Richard M. R. Coulson; Pedro M. Coutinho; Etienne Danchin; Andrew C. Diener; Liane R. Gale; Donald M. Gardiner; Stephen A. Goff

Fusarium species are among the most important phytopathogenic and toxigenic fungi. To understand the molecular underpinnings of pathogenicity in the genus Fusarium, we compared the genomes of three phenotypically diverse species: Fusarium graminearum, Fusarium verticillioides and Fusarium oxysporum f. sp. lycopersici. Our analysis revealed lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes and account for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity, indicative of horizontal acquisition. Experimentally, we demonstrate the transfer of two LS chromosomes between strains of F. oxysporum, converting a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in F. oxysporum. These findings put the evolution of fungal pathogenicity into a new perspective.


Science | 2007

The Fusarium graminearum Genome Reveals a Link Between Localized Polymorphism and Pathogen Specialization

Christina A. Cuomo; Ulrich Güldener; Jin-Rong Xu; Frances Trail; B. Gillian Turgeon; Antonio Di Pietro; Jonathan D. Walton; Li-Jun Ma; Scott E. Baker; Martijn Rep; Gerhard Adam; John Antoniw; Thomas K. Baldwin; Sarah E. Calvo; Yueh Long Chang; David DeCaprio; Liane R. Gale; Sante Gnerre; Rubella S. Goswami; Kim E. Hammond-Kosack; Linda J. Harris; Karen Hilburn; John C. Kennell; Scott Kroken; Jon K. Magnuson; Gertrud Mannhaupt; Evan Mauceli; Hans W. Mewes; Rudolf Mitterbauer; Gary J. Muehlbauer

We sequenced and annotated the genome of the filamentous fungus Fusarium graminearum, a major pathogen of cultivated cereals. Very few repetitive sequences were detected, and the process of repeat-induced point mutation, in which duplicated sequences are subject to extensive mutation, may partially account for the reduced repeat content and apparent low number of paralogous (ancestrally duplicated) genes. A second strain of F. graminearum contained more than 10,000 single-nucleotide polymorphisms, which were frequently located near telomeres and within other discrete chromosomal segments. Many highly polymorphic regions contained sets of genes implicated in plant-fungus interactions and were unusually divergent, with higher rates of recombination. These regions of genome innovation may result from selection due to interactions of F. graminearum with its plant hosts.


Cell | 1997

Novel Disease Resistance Specificities Result from Sequence Exchange between Tandemly Repeated Genes at the Cf-4/9 Locus of Tomato

Martin Parniske; Kim E. Hammond-Kosack; Catherine Golstein; Colwyn M. Thomas; David A. Jones; Kate Harrison; Brande B. H. Wulff; Jonathan D. G. Jones

Tomato Cf genes confer resistance to C. fulvum, reside in complex loci carrying multiple genes, and encode predicted membrane-bound proteins with extracytoplasmic leucine-rich repeats. At least two Cf-9 homologs confer novel C. fulvum resistance specificities. Comparison of 11 genes revealed 7 hypervariable amino acid positions in a motif of the leucine-rich repeats predicted to form a beta-strand/beta-turn in which the hypervariable residues are solvent exposed and potentially contribute to recognition specificity. Higher nonsynonymous than synonymous substitution rates in this region imply selection for sequence diversification. We propose that the level of polymorphism between intergenic regions determines the frequency of sequence exchange between the tandemly repeated genes. This permits sufficient exchange to generate sequence diversity but prevents sequence homogenization.


Current Opinion in Biotechnology | 2003

Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding.

Kim E. Hammond-Kosack; Jane E. Parker

Activation of local and systemic plant defences in response to pathogen attack involves dramatic cellular reprogramming. Over the past 10 years many novel genes, proteins and molecules have been discovered as a result of investigating plant-pathogen interactions. Most attempts to harness this knowledge to engineer improved disease resistance in crops have failed. Although gene efficacy in transgenic plants has often been good, commercial exploitation has not been possible because of the detrimental effects on plant growth, development and crop yield. Biotechnology approaches have now shifted emphasis towards marker-assisted breeding and the construction of vectors containing highly regulated transgenes that confer resistance in several distinct ways.


PLOS Genetics | 2011

Finished Genome of the Fungal Wheat Pathogen Mycosphaerella graminicola Reveals Dispensome Structure, Chromosome Plasticity, and Stealth Pathogenesis

Stephen B. Goodwin; Sarrah Ben M'Barek; Braham Dhillon; Alexander H J Wittenberg; Charles F. Crane; James K. Hane; Andrew J Foster; Theo van der Lee; Jane Grimwood; Andrea Aerts; John Antoniw; Andy M. Bailey; Burt H. Bluhm; Judith Bowler; Jim Bristow; Ate van der Burgt; Blondy Canto-Canche; Alice C. L. Churchill; Laura Conde-Ferràez; Hans J. Cools; Pedro M. Coutinho; Michael Csukai; Paramvir Dehal; Pierre J. G. M. de Wit; Bruno Giuliano Garisto Donzelli; Henri C. van de Geest; Roeland C. H. J. van Ham; Kim E. Hammond-Kosack; Bernard Henrissat; Andrzej Kilian

The plant-pathogenic fungus Mycosphaerella graminicola (asexual stage: Septoria tritici) causes septoria tritici blotch, a disease that greatly reduces the yield and quality of wheat. This disease is economically important in most wheat-growing areas worldwide and threatens global food production. Control of the disease has been hampered by a limited understanding of the genetic and biochemical bases of pathogenicity, including mechanisms of infection and of resistance in the host. Unlike most other plant pathogens, M. graminicola has a long latent period during which it evades host defenses. Although this type of stealth pathogenicity occurs commonly in Mycosphaerella and other Dothideomycetes, the largest class of plant-pathogenic fungi, its genetic basis is not known. To address this problem, the genome of M. graminicola was sequenced completely. The finished genome contains 21 chromosomes, eight of which could be lost with no visible effect on the fungus and thus are dispensable. This eight-chromosome dispensome is dynamic in field and progeny isolates, is different from the core genome in gene and repeat content, and appears to have originated by ancient horizontal transfer from an unknown donor. Synteny plots of the M. graminicola chromosomes versus those of the only other sequenced Dothideomycete, Stagonospora nodorum, revealed conservation of gene content but not order or orientation, suggesting a high rate of intra-chromosomal rearrangement in one or both species. This observed “mesosynteny” is very different from synteny seen between other organisms. A surprising feature of the M. graminicola genome compared to other sequenced plant pathogens was that it contained very few genes for enzymes that break down plant cell walls, which was more similar to endophytes than to pathogens. The stealth pathogenesis of M. graminicola probably involves degradation of proteins rather than carbohydrates to evade host defenses during the biotrophic stage of infection and may have evolved from endophytic ancestors.


Plant Physiology | 1996

Involvement of Reactive Oxygen Species, Glutathione Metabolism, and Lipid Peroxidation in the Cf-Gene-Dependent Defense Response of Tomato Cotyledons Induced by Race-Specific Elicitors of Cladosporium fulvum.

Mike J. May; Kim E. Hammond-Kosack; Jonathan D. G. Jones

The chronological order of responses to Cladosporium fulvum (Cooke) (Cf) race-specific elicitors was assessed in cotyledons of three near-isogenic tomato (Lycopersicon esculentum Mill.) lines carrying either Cf-9 or Cf-2 or no Cf gene. The responses observed were dependent on the presence of a Cf gene, Avr-gene product dose injected, and the relative humidity (RH) of the growth chamber. At ambient RH, superoxide formation and lipid peroxidation occurred after 2 h (Cf9) and 4 h (Cf2). At elevated RH (98%) and at lower avirulence elicitor dose, Cf-Avr-dependent lipid peroxidation was considerably attenuated. Significant electrolyte leakage occurred by 18 h but only at the lower RH. Total glutathione levels began to increase 2 to 4 h and 4 to 8 h after challenge of Cf9 and Cf2 cells, respectively, and by 48 h reached 665 and 570% of initial levels. A large proportion of this accumulation (87%) was as oxidized glutathione. When the RH was increased to 98%, increases in glutathione levels were strongly attenuated. Increased lipoxygenase enzyme activity was detected 8 h postchallenge in either incompatible interaction. These results indicate that the activation of the Cf-Avr-mediated defense response results in severe oxidative stress.


Plant Physiology | 2011

Analysis of Two in Planta Expressed LysM Effector Homologs from the Fungus Mycosphaerella graminicola Reveals Novel Functional Properties and Varying Contributions to Virulence on Wheat

Rosalind Marshall; Anja Kombrink; Juliet Motteram; Elisa Loza-Reyes; J. A. Lucas; Kim E. Hammond-Kosack; Bart P. H. J. Thomma; Jason J. Rudd

Secreted effector proteins enable plant pathogenic fungi to manipulate host defenses for successful infection. Mycosphaerella graminicola causes Septoria tritici blotch disease of wheat (Triticum aestivum) leaves. Leaf infection involves a long (approximately 7 d) period of symptomless intercellular colonization prior to the appearance of necrotic disease lesions. Therefore, M. graminicola is considered as a hemibiotrophic (or necrotrophic) pathogen. Here, we describe the molecular and functional characterization of M. graminicola homologs of Ecp6 (for extracellular protein 6), the Lysin (LysM) domain-containing effector from the biotrophic tomato (Solanum lycopersicum) leaf mold fungus Cladosporium fulvum, which interferes with chitin-triggered immunity in plants. Three LysM effector homologs are present in the M. graminicola genome, referred to as Mg3LysM, Mg1LysM, and MgxLysM. Mg3LysM and Mg1LysM genes were strongly transcriptionally up-regulated specifically during symptomless leaf infection. Both proteins bind chitin; however, only Mg3LysM blocked the elicitation of chitin-induced plant defenses. In contrast to C. fulvum Ecp6, both Mg1LysM and Mg3LysM also protected fungal hyphae against plant-derived hydrolytic enzymes, and both genes show significantly more nucleotide polymorphism giving rise to nonsynonymous amino acid changes. While Mg1LysM deletion mutant strains of M. graminicola were fully pathogenic toward wheat leaves, Mg3LysM mutant strains were severely impaired in leaf colonization, did not trigger lesion formation, and were unable to undergo asexual sporulation. This virulence defect correlated with more rapid and pronounced expression of wheat defense genes during the symptomless phase of leaf colonization. These data highlight different functions for MgLysM effector homologs during plant infection, including novel activities that distinguish these proteins from C. fulvum Ecp6.


The Plant Cell | 1998

The Tomato Cf-9 Disease Resistance Gene Functions in Tobacco and Potato to Confer Responsiveness to the Fungal Avirulence Gene Product Avr9

Kim E. Hammond-Kosack; Saijun Tang; Kate Harrison; Jonathan D. G. Jones

The Cf-9 gene encodes an extracytoplasmic leucine-rich repeat protein that confers resistance in tomato to races of the fungus Cladosporium fulvum that express the corresponding avirulence gene Avr9. We investigated whether the genomic Cf-9 gene functions in potato and tobacco. Transgenic tobacco and potato plants carrying Cf-9 exhibit a rapid hypersensitive cell death response (HR) to Avr 9 peptide injection. Cf9 tobacco plants were reciprocally crossed to Avr9-producing tobacco. A developmentally regulated seedling lethal phenotype occurred in F1 progeny when Cf9 was used as the male parent and Avr9 as the female parent. However, when Cf9 was inherited in the maternal tissue and a heterozygous Avr9 plant was used as the pollen donor, a much earlier reaction was caused, leading to no germination of any F1 seed. Detailed analysis of the Avr9-induced responses in Cf9 tobacco leaves revealed that (1) most mesophyll cells died within 3 hr (compared with 12 to 16 hr in tomato); (2) the macroscopic HR was visible at an Avr9 titer five times lower than that which caused visible symptoms in tomato; (3) the HR invariably extended into noninjected panels of the tobacco leaf; (4) no HR occurred in leaves of young tobacco plants; (5) in older plants, the HR was dramatically enhanced by sequential Avr9 challenges; and (6) coexpression of a salicylate hydroxylase transgene (nahG) from Pseudomonas putida reduced the severity of the macroscopic leaf HR and also restored germination to Cf9 × 35S:Avr9 F1 seedlings. Simultaneous introduction of Cf-9 homologs (Hcr9-9 genes A and B or D) along with the native Cf-9 gene did not alter the responses that were specifically induced by Avr9. Various ways to use the Cf-9–Avr9 gene combination to engineer broad-spectrum disease resistance in several solanaceous species are discussed.


Nucleic Acids Research | 2006

PHI-base: a new database for pathogen host interactions

Rainer Winnenburg; Thomas K. Baldwin; Martin Urban; Christopher J. Rawlings; Jacob Köhler; Kim E. Hammond-Kosack

To utilize effectively the growing number of verified genes that mediate an organisms ability to cause disease and/or to trigger host responses, we have developed PHI-base. This is a web-accessible database that currently catalogs 405 experimentally verified pathogenicity, virulence and effector genes from 54 fungal and Oomycete pathogens, of which 176 are from animal pathogens, 227 from plant pathogens and 3 from pathogens with a fungal host. PHI-base is the first on-line resource devoted to the identification and presentation of information on fungal and Oomycete pathogenicity genes and their host interactions. As such, PHI-base is a valuable resource for the discovery of candidate targets in medically and agronomically important fungal and Oomycete pathogens for intervention with synthetic chemistries and natural products. Each entry in PHI-base is curated by domain experts and supported by strong experimental evidence (gene/transcript disruption experiments) as well as literature references in which the experiments are described. Each gene in PHI-base is presented with its nucleotide and deduced amino acid sequence as well as a detailed description of the predicted proteins function during the host infection process. To facilitate data interoperability, we have annotated genes using controlled vocabularies (Gene Ontology terms, Enzyme Commission Numbers and so on), and provide links to other external data sources (e.g. NCBI taxonomy and EMBL). We welcome new data for inclusion in PHI-base, which is freely accessed at .


Molecular Plant-microbe Interactions | 2007

Transcriptional Adaptation of Mycosphaerella graminicola to Programmed Cell Death (PCD) of Its Susceptible Wheat Host

John Keon; John Antoniw; Raffaella Carzaniga; Siân Deller; Jane L. Ward; John M. Baker; Michael H. Beale; Kim E. Hammond-Kosack; Jason J. Rudd

Many important fungal pathogens of plants spend long periods (days to weeks) of their infection cycle in symptomless association with living host tissue, followed by a sudden transition to necrotrophic feeding as host tissue death occurs. Little is known about either the host responses associated with this sudden transition or the specific adaptations made by the pathogen to invoke or tolerate it. We are studying a major host-specific fungal pathogen of cultivated wheat, Septoria tritici (teleomorph Mycosphaerella graminicola). Here, we describe the host responses of wheat leaves infected with M. graminicola during the development of disease symptoms and use microarray transcription profiling to identify adaptive responses of the fungus to its changing environment. We show that symptom development on a susceptible host genotype has features reminiscent of the hypersensitive response, a rapid and strictly localized form of host programmed cell death (PCD) more commonly associated with disease-resistance mechanisms. The initiation and advancement of this host response is associated with a loss of cell-membrane integrity and dramatic increases in apoplastic metabolites and the rate of fungal growth. Microarray analysis of the fungal genes differentially expressed before and after the onset of host PCD supports a transition to more rapid growth. Specific physiological adaptation of the fungus is also revealed with respect to membrane transport, chemical and oxidative stress mechanisms, and metabolism. Our data support the hypothesis that host plant PCD plays an important role in susceptibility towards fungal pathogens with necrotrophic lifestyles.

Collaboration


Dive into the Kim E. Hammond-Kosack's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge