Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan D. Linton is active.

Publication


Featured researches published by Jonathan D. Linton.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Flow of energy in the outer retina in darkness and in light

Jonathan D. Linton; Lars C. Holzhausen; Norbert Babai; Hongman Song; Kiyoharu Miyagishima; George W. Stearns; Ken Lindsay; J. Wei; Andrei O. Chertov; Theo A. Peters; Romeo Caffé; Helma Pluk; Mathias W. Seeliger; Naoyuki Tanimoto; Kimberly K. Fong; Laura Bolton; Denise L. T. Kuok; Ian R. Sweet; Theodore M. Bartoletti; Roxana A. Radu; Gabriel H. Travis; Willam N. Zagotta; Ellen Townes-Anderson; Ed Parker; Catharina E.E.M. Van der Zee; Alapakkam P. Sampath; Maxim Sokolov; Wallace B. Thoreson; James B. Hurley

Structural features of neurons create challenges for effective production and distribution of essential metabolic energy. We investigated how metabolic energy is distributed between cellular compartments in photoreceptors. In avascular retinas, aerobic production of energy occurs only in mitochondria that are located centrally within the photoreceptor. Our findings indicate that metabolic energy flows from these central mitochondria as phosphocreatine toward the photoreceptor’s synaptic terminal in darkness. In light, it flows in the opposite direction as ATP toward the outer segment. Consistent with this model, inhibition of creatine kinase in avascular retinas blocks synaptic transmission without influencing outer segment activity. Our findings also reveal how vascularization of neuronal tissue can influence the strategies neurons use for energy management. In vascularized retinas, mitochondria in the synaptic terminals of photoreceptors make neurotransmission less dependent on creatine kinase. Thus, vasculature of the tissue and the intracellular distribution of mitochondria can play key roles in setting the strategy for energy distribution in neurons.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Na(V)1.1 channels are critical for intercellular communication in the suprachiasmatic nucleus and for normal circadian rhythms.

Sung Han; Frank H. Yu; Michael D. Schwartz; Jonathan D. Linton; Martha M. Bosma; James B. Hurley; William A. Catterall; Horacio O. de la Iglesia

NaV1.1 is the primary voltage-gated Na+ channel in several classes of GABAergic interneurons, and its reduced activity leads to reduced excitability and decreased GABAergic tone. Here, we show that NaV1.1 channels are expressed in the suprachiasmatic nucleus (SCN) of the hypothalamus. Mice carrying a heterozygous loss of function mutation in the Scn1a gene (Scn1a+/−), which encodes the pore-forming α-subunit of the NaV1.1 channel, have longer circadian period than WT mice and lack light-induced phase shifts. In contrast, Scn1a+/− mice have exaggerated light-induced negative-masking behavior and normal electroretinogram, suggesting an intact retina light response. Scn1a+/− mice show normal light induction of c-Fos and mPer1 mRNA in ventral SCN but impaired gene expression responses in dorsal SCN. Electrical stimulation of the optic chiasm elicits reduced calcium transients and impaired ventro-dorsal communication in SCN neurons from Scn1a+/− mice, and this communication is barely detectable in the homozygous gene KO (Scn1a−/−). Enhancement of GABAergic transmission with tiagabine plus clonazepam partially rescues the effects of deletion of NaV1.1 on circadian period and phase shifting. Our report demonstrates that a specific voltage-gated Na+ channel and its associated impairment of SCN interneuronal communication lead to major deficits in the function of the master circadian pacemaker. Heterozygous loss of NaV1.1 channels is the underlying cause for severe myoclonic epilepsy of infancy; the circadian deficits that we report may contribute to sleep disorders in severe myoclonic epilepsy of infancy patients.


Journal of Biological Chemistry | 2011

Roles of glucose in photoreceptor survival.

Andrei O. Chertov; Lars C. Holzhausen; Iok Teng Kuok; Drew Couron; Ed Parker; Jonathan D. Linton; Martin Sadilek; Ian R. Sweet; James B. Hurley

Background: The aim of this study is to understand the energy requirements of photoreceptor neurons. Results: Glucose withdrawal causes photoreceptor death. Mitochondrial fuels and autophagy can enhance survival. Conclusion: Mitochondrial activity and substrates for anabolic activity are required for photoreceptor survival. Significance: Understanding the energy requirements of photoreceptors will contribute to understanding the basis of retinal disease. Vertebrate photoreceptor neurons have a high demand for metabolic energy, and their viability is very sensitive to genetic and environmental perturbations. We investigated the relationship between energy metabolism and cell death by evaluating the metabolic effects of glucose deprivation on mouse photoreceptors. Oxygen consumption, lactate production, ATP, NADH/NAD+, TCA cycle intermediates, morphological changes, autophagy, and viability were evaluated. We compared retinas incubated with glucose to retinas deprived of glucose or retinas treated with a mixture of mitochondrion-specific fuels. Rapid and slow phases of cell death were identified. The rapid phase is linked to reduced mitochondrial activity, and the slower phase reflects a need for substrates for cell maintenance and repair.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Pyruvate kinase and aspartate-glutamate carrier distributions reveal key metabolic links between neurons and glia in retina

Ken Lindsay; Jianhai Du; Stephanie R. Sloat; Laura Contreras; Jonathan D. Linton; Sally J. Turner; Martin Sadilek; Jorgina Satrústegui; James B. Hurley

Significance Aerobic glycolysis is a metabolic adaptation that helps cells in a tumor meet high anabolic demands. The M2 isoform of pyruvate kinase (PKM2) is associated with aerobic glycolysis in cancer cells. Aerobic glycolysis also accounts for most of the Glc metabolized in retinas. We find that photoreceptors (PRs) in retinas, like cancer cells in tumors, express PKM2. We also found very little expression of pyruvate kinase (PK) in Müller glia. We present metabolic flux analyses that show a metabolic relationship between PRs and Müller cells (MCs) that is different from the relationship between some neurons and astrocytes in brain. To compensate for PK deficiency and aspartate/glutamate carrier 1 deficiencies, MCs can fuel their mitochondria with lactate and aspartate produced by PRs. Symbiotic relationships between neurons and glia must adapt to structures, functions, and metabolic roles of the tissues they are in. We show here that Müller glia in retinas have specific enzyme deficiencies that can enhance their ability to synthesize Gln. The metabolic cost of these deficiencies is that they impair the Müller cell’s ability to metabolize Glc. We show here that the cells can compensate for this deficiency by using metabolites produced by neurons. Müller glia are deficient for pyruvate kinase (PK) and for aspartate/glutamate carrier 1 (AGC1), a key component of the malate-aspartate shuttle. In contrast, photoreceptor neurons express AGC1 and the M2 isoform of pyruvate kinase, which is commonly associated with aerobic glycolysis in tumors, proliferating cells, and some other cell types. Our findings reveal a previously unidentified type of metabolic relationship between neurons and glia. Müller glia compensate for their unique metabolic adaptations by using lactate and aspartate from neurons as surrogates for their missing PK and AGC1.


Journal of Biological Chemistry | 2013

Inhibition of mitochondrial pyruvate transport by Zaprinast causes massive accumulation of aspartate at the expense of glutamate in the retina

Jianhai Du; Whitney M. Cleghorn; Laura Contreras; Ken Lindsay; Austin M. Rountree; Andrei O. Chertov; Sally J. Turner; Ayse Sahaboglu; Jonathan D. Linton; Martin Sadilek; Jorgina Satrústegui; Ian R. Sweet; François Paquet-Durand; James B. Hurley

Background: Pyruvate transport into mitochondria is a key step in energy metabolism. Zaprinast is a well known phosphodiesterase inhibitor. Results: Zaprinast has a strong influence on pyruvate transport into mitochondria. Conclusion: Inhibition of the mitochondrial pyruvate carrier by Zaprinast causes accumulation of aspartate at the expense of glutamate. Significance: Maintenance of normal amino acid levels in the retina relies on pyruvate transport into mitochondria. Transport of pyruvate into mitochondria by the mitochondrial pyruvate carrier is crucial for complete oxidation of glucose and for biosynthesis of amino acids and lipids. Zaprinast is a well known phosphodiesterase inhibitor and lead compound for sildenafil. We found Zaprinast alters the metabolomic profile of mitochondrial intermediates and amino acids in retina and brain. This metabolic effect of Zaprinast does not depend on inhibition of phosphodiesterase activity. By providing 13C-labeled glucose and glutamine as fuels, we found that the metabolic profile of the Zaprinast effect is nearly identical to that of inhibitors of the mitochondrial pyruvate carrier. Both stimulate oxidation of glutamate and massive accumulation of aspartate. Moreover, Zaprinast inhibits pyruvate-driven O2 consumption in brain mitochondria and blocks mitochondrial pyruvate carrier in liver mitochondria. Inactivation of the aspartate glutamate carrier in retina does not attenuate the metabolic effect of Zaprinast. Our results show that Zaprinast is a potent inhibitor of mitochondrial pyruvate carrier activity, and this action causes aspartate to accumulate at the expense of glutamate. Our findings show that Zaprinast is a specific mitochondrial pyruvate carrier (MPC) inhibitor and may help to elucidate the roles of MPC in amino acid metabolism and hypoglycemia.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Cytosolic reducing power preserves glutamate in retina

Jianhai Du; Whitney M. Cleghorn; Laura Contreras; Jonathan D. Linton; Guy C.-K. Chan; Andrei O. Chertov; Takeyori Saheki; Viren Govindaraju; Martin Sadilek; Jorgina Satrústegui; James B. Hurley

Significance This report shows that the reducing power in the environment influences oxidation of glutamate in a neuronal tissue. Glutamate is a neurotransmitter, and it is especially important as a metabolite because it is required for synthesis of glutathione, other amino acids, and proteins. Glutamate also is a key intermediate in glutamine-dependent anaplerosis, now considered to be a principal source of citric acid cycle intermediates in cancer cells. Our analyses also show that the reducing power in the environmental can influence glutamate oxidation in cancer cells. Glutamate in neurons is an important excitatory neurotransmitter, but it also is a key metabolite. We investigated how glutamate in a neural tissue is protected from catabolism. Flux analysis using 13C-labeled fuels revealed that retinas use activities of the malate aspartate shuttle to protect >98% of their glutamate from oxidation in mitochondria. Isolation of glutamate from the oxidative pathway relies on cytosolic NADH/NAD+, which is influenced by extracellular glucose, lactate, and pyruvate.


Methods in Enzymology | 2015

Probing Metabolism in the Intact Retina Using Stable Isotope Tracers.

Jianhai Du; Jonathan D. Linton; James B. Hurley

Vertebrate retinas have several characteristics that make them particularly interesting from a metabolic perspective. The retinas have a highly laminated structure, high energy demands, and they share several metabolic features with tumors, such as a strong Warburg effect and abundant pyruvate kinase M2 isoform expression. The energy demands of retinas are both qualitatively and quantitatively different in light and darkness and metabolic dysfunction could cause retinal degeneration. Stable isotope-based metabolic analysis with mass spectrometry is a powerful tool to trace the dynamic metabolic reactions and reveal novel metabolic pathways within cells and between cells in retina. Here, we describe methods to quantify retinal metabolism in intact retinas and discuss applications of these methods to the understanding of neuron-glia interaction, light and dark adaptation, and retinal degenerative diseases.


eLife | 2017

Biochemical adaptations of the retina and retinal pigment epithelium support a metabolic ecosystem in the vertebrate eye

Mark A Kanow; Michelle Giarmarco; Connor Jankowski; Kristine Tsantilas; Abbi L. Engel; Jianhai Du; Jonathan D. Linton; Christopher C. Farnsworth; Stephanie R. Sloat; Austin M. Rountree; Ian R. Sweet; Ken Lindsay; Edward Parker; Susan E. Brockerhoff; Martin Sadilek; Jennifer R. Chao; James B. Hurley

Here we report multiple lines of evidence for a comprehensive model of energy metabolism in the vertebrate eye. Metabolic flux, locations of key enzymes, and our finding that glucose enters mouse and zebrafish retinas mostly through photoreceptors support a conceptually new model for retinal metabolism. In this model, glucose from the choroidal blood passes through the retinal pigment epithelium to the retina where photoreceptors convert it to lactate. Photoreceptors then export the lactate as fuel for the retinal pigment epithelium and for neighboring Müller glial cells. We used human retinal epithelial cells to show that lactate can suppress consumption of glucose by the retinal pigment epithelium. Suppression of glucose consumption in the retinal pigment epithelium can increase the amount of glucose that reaches the retina. This framework for understanding metabolic relationships in the vertebrate retina provides new insights into the underlying causes of retinal disease and age-related vision loss.


Cell Death and Disease | 2018

Pyruvate kinase M2 regulates photoreceptor structure, function, and viability.

Ammaji Rajala; Yuhong Wang; Richard S. Brush; Kristine Tsantilas; Connor Jankowski; Ken Lindsay; Jonathan D. Linton; James B. Hurley; Robert E. Anderson; Raju V. S. Rajala

Pyruvate kinase M2 (PKM2) is a glycolytic enzyme that is expressed in cancer cells. Its role in tumor metabolism is not definitively established, but investigators have suggested that regulation of PKM2 activity can cause accumulation of glycolytic intermediates and increase flux through the pentose phosphate pathway. Recent evidence suggests that PKM2 also may have non-metabolic functions, including as a transcriptional co-activator in gene regulation. We reported previously that PKM2 is abundant in photoreceptor cells in mouse retinas. In the present study, we conditionally deleted PKM2 (rod-cre PKM2-KO) in rod photoreceptors and found that the absence of PKM2 causes increased expression of PKM1 in rods. Analysis of metabolic flux from U-13C glucose shows that rod-cre PKM2-KO retinas accumulate glycolytic intermediates, consistent with an overall reduction in the amount of pyruvate kinase activity. Rod-cre PKM2-KO mice also have an increased NADPH availability could favor lipid synthesis, but we found no difference in phospholipid synthesis between rod-cre PKM2 KO and PKM2-positive controls. As rod-cre PKM2-KO mice aged, we observed a significant loss of rod function, reduced thickness of the photoreceptor outer segment layer, and reduced expression of photoreceptor proteins, including PDE6β. The rod-cre PKM2-KO retinas showed greater TUNEL staining than wild-type retinas, indicating a slow retinal degeneration. In vitro analysis showed that PKM2 can regulate transcriptional activity from the PDE6β promoter in vitro. Our findings indicate that both the metabolic and transcriptional regulatory functions of PKM2 may contribute to photoreceptor structure, function, and viability.


Archive | 2018

How Excessive cGMP Impacts Metabolic Proteins in Retinas at the Onset of Degeneration

Jianhai Du; Jie An; Jonathan D. Linton; Yekai Wang; James B. Hurley

Aryl-hydrocarbon receptor interacting protein-like 1 (AIPL1) is essential to stabilize cGMP phosphodiesterase 6 (PDE6) in rod photoreceptors. Mutation of AIPL1 leads to loss of PDE6, accumulation of intracellular cGMP, and rapid degeneration of rods. To understand the metabolic basis for the photoreceptor degeneration caused by excessive cGMP, we performed proteomics and phosphoproteomics analyses on retinas from AIPL1-/- mice at the onset of rod cell death. AIPL1-/- retinas have about 18 times less than normal PDE6a and no detectable PDE6b. We identified twelve other proteins and thirty-nine phosphorylated proteins related to cell metabolism that are significantly altered preceding the massive degeneration of rods. They include transporters, kinases, phosphatases, transferases, and proteins involved in mitochondrial bioenergetics and metabolism of glucose, lipids, amino acids, nucleotides, and RNA. In AIPLI-/- retinas mTOR and proteins involved in mitochondrial energy production and lipid synthesis are more dephosphorylated, but glycolysis proteins and proteins involved in leucine catabolism are more phosphorylated than in normal retinas. Our findings indicate that elevating cGMP rewires cellular metabolism prior to photoreceptor degeneration and that targeting metabolism may be a productive strategy to prevent or slow retinal degeneration.

Collaboration


Dive into the Jonathan D. Linton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianhai Du

West Virginia University

View shared research outputs
Top Co-Authors

Avatar

Ken Lindsay

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Martin Sadilek

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian R. Sweet

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Jorgina Satrústegui

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Laura Contreras

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge