Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan D. Parsons is active.

Publication


Featured researches published by Jonathan D. Parsons.


Journal of Medicinal Chemistry | 2008

Novel Dual-Targeting Benzimidazole Urea Inhibitors of DNA Gyrase and Topoisomerase IV Possessing Potent Antibacterial Activity: Intelligent Design and Evolution through the Judicious Use of Structure-Guided Design and Stucture−Activity Relationships

Paul S. Charifson; Anne-Laure Grillot; Trudy H. Grossman; Jonathan D. Parsons; Michael Badia; Steve Bellon; David D. Deininger; Joseph Drumm; Christian H. Gross; Arnaud Letiran; Yusheng Liao; Nagraj Mani; David P. Nicolau; Emanuele Perola; Steven Ronkin; Dean Shannon; Lora Swenson; Qing Tang; Pamela R. Tessier; Ski-Kai Tian; Martin Trudeau; Tiansheng Wang; Yunyi Wei; Hong Zhang; Dean Stamos

The discovery of new antibacterial agents with novel mechanisms of action is necessary to overcome the problem of bacterial resistance that affects all currently used classes of antibiotics. Bacterial DNA gyrase and topoisomerase IV are well-characterized clinically validated targets of the fluoroquinolone antibiotics which exert their antibacterial activity through inhibition of the catalytic subunits. Inhibition of these targets through interaction with their ATP sites has been less clinically successful. The discovery and characterization of a new class of low molecular weight, synthetic inhibitors of gyrase and topoisomerase IV that bind to the ATP sites are presented. The benzimidazole ureas are dual targeting inhibitors of both enzymes and possess potent antibacterial activity against a wide spectrum of relevant pathogens responsible for hospital- and community-acquired infections. The discovery and optimization of this novel class of antibacterials by the use of structure-guided design, modeling, and structure-activity relationships are described. Data are presented for enzyme inhibition, antibacterial activity, and in vivo efficacy by oral and intravenous administration in two rodent infection models.


Antimicrobial Agents and Chemotherapy | 2004

Crystal Structures of Escherichia coli Topoisomerase IV ParE Subunit (24 and 43 Kilodaltons): a Single Residue Dictates Differences in Novobiocin Potency against Topoisomerase IV and DNA Gyrase

Steven Bellon; Jonathan D. Parsons; Yunyi Wei; Koto Hayakawa; Lora Swenson; Paul S. Charifson; Judith A. Lippke; Robert Aldape; Christian H. Gross

ABSTRACT Topoisomerase IV and DNA gyrase are related bacterial type II topoisomerases that utilize the free energy from ATP hydrolysis to catalyze topological changes in the bacterial genome. The essential function of DNA gyrase is the introduction of negative DNA supercoils into the genome, whereas the essential function of topoisomerase IV is to decatenate daughter chromosomes following replication. Here, we report the crystal structures of a 43-kDa N-terminal fragment of Escherichia coli topoisomerase IV ParE subunit complexed with adenylyl-imidodiphosphate at 2.0-Å resolution and a 24-kDa N-terminal fragment of the ParE subunit complexed with novobiocin at 2.1-Å resolution. The solved ParE structures are strikingly similar to the known gyrase B (GyrB) subunit structures. We also identified single-position equivalent amino acid residues in ParE (M74) and in GyrB (I78) that, when exchanged, increased the potency of novobiocin against topoisomerase IV by nearly 20-fold (to 12 nM). The corresponding exchange in gyrase (I78 M) yielded a 20-fold decrease in the potency of novobiocin (to 1.0 μM). These data offer an explanation for the observation that novobiocin is significantly less potent against topoisomerase IV than against DNA gyrase. Additionally, the enzyme kinetic parameters were affected. In gyrase, the ATP Km increased ≈5-fold and the Vmax decreased ≈30%. In contrast, the topoisomerase IV ATP Km decreased by a factor of 6, and the Vmax increased ≈2-fold from the wild-type values. These data demonstrate that the ParE M74 and GyrB I78 side chains impart opposite effects on the enzymes substrate affinity and catalytic efficiency.


Antimicrobial Agents and Chemotherapy | 2007

Dual Targeting of GyrB and ParE by a Novel Aminobenzimidazole Class of Antibacterial Compounds

Trudy H. Grossman; Douglas J. Bartels; Steve Mullin; Christian H. Gross; Jonathan D. Parsons; Yusheng Liao; Anne-Laure Grillot; Dean Stamos; Eric R. Olson; Paul S. Charifson; Nagraj Mani

ABSTRACT A structure-guided drug design approach was used to optimize a novel series of aminobenzimidazoles that inhibit the essential ATPase activities of bacterial DNA gyrase and topoisomerase IV and that show potent activities against a variety of bacterial pathogens. Two such compounds, VRT-125853 and VRT-752586, were characterized for their target specificities and preferences in bacteria. In metabolite incorporation assays, VRT-125853 inhibited both DNA and RNA synthesis but had little effect on protein synthesis. Both compounds inhibited the maintenance of negative supercoils in plasmid DNA in Escherichia coli at the MIC. Sequencing of DNA corresponding to the GyrB and ParE ATP-binding regions in VRT-125853- and VRT-752586-resistant mutants revealed that their primary target in Staphylococcus aureus and Haemophilus influenzae was GyrB, whereas in Streptococcus pneumoniae it was ParE. In Enterococcus faecalis, the primary target of VRT-125853 was ParE, whereas for VRT-752586 it was GyrB. DNA transformation experiments with H. influenzae and S. aureus proved that the mutations observed in gyrB resulted in decreased susceptibilities to both compounds. Novobiocin resistance-conferring mutations in S. aureus, H. influenzae, and S. pneumoniae were found in gyrB, and these mutants showed little or no cross-resistance to VRT-125853 or VRT-752586 and vice versa. Furthermore, gyrB and parE double mutations increased the MICs of VRT-125853 and VRT-752586 significantly, providing evidence of dual targeting. Spontaneous frequencies of resistance to VRT-752586 were below detectable levels (<5.2 × 10−10) for wild-type E. faecalis but were significantly elevated for strains containing single and double target-based mutations, demonstrating that dual targeting confers low levels of resistance emergence and the maintenance of susceptibility in vitro.


Antimicrobial Agents and Chemotherapy | 2006

In vitro characterization of the antibacterial spectrum of novel bacterial type II topoisomerase inhibitors of the aminobenzimidazole class.

Nagraj Mani; Christian H. Gross; Jonathan D. Parsons; Brian Hanzelka; Ute Müh; Steve Mullin; Yusheng Liao; Anne-Laure Grillot; Dean Stamos; Paul S. Charifson; Trudy H. Grossman

ABSTRACT Antibiotics with novel mechanisms of action are becoming increasingly important in the battle against bacterial resistance to all currently used classes of antibiotics. Bacterial DNA gyrase and topoisomerase IV (topoIV) are the familiar targets of fluoroquinolone and coumarin antibiotics. Here we present the characterization of two members of a new class of synthetic bacterial topoII ATPase inhibitors: VRT-125853 and VRT-752586. These aminobenzimidazole compounds were potent inhibitors of both DNA gyrase and topoIV and had excellent antibacterial activities against a wide spectrum of problematic pathogens responsible for both nosocomial and community-acquired infections, including staphylococci, streptococci, enterococci, and mycobacteria. Consistent with the novelty of their structures and mechanisms of action, antibacterial potency was unaffected by commonly encountered resistance phenotypes, including fluoroquinolone resistance. In time-kill assays, VRT-125853 and VRT-752586 were bactericidal against Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus faecalis, and Haemophilus influenzae, causing 3-log reductions in viable cells within 24 h. Finally, similar to the fluoroquinolones, relatively low frequencies of spontaneous resistance to VRT-125853 and VRT-752586 were found, a property consistent with their in vitro dual-targeting activities.


Antimicrobial Agents and Chemotherapy | 2003

Active-Site Residues of Escherichia coli DNA Gyrase Required in Coupling ATP Hydrolysis to DNA Supercoiling and Amino Acid Substitutions Leading to Novobiocin Resistance

Christian H. Gross; Jonathan D. Parsons; Trudy H. Grossman; Paul S. Charifson; Steven Bellon; James Jernee; Maureen Dwyer; Stephen P. Chambers; William Markland; Martyn Botfield; Scott A. Raybuck

ABSTRACT DNA gyrase is a bacterial type II topoisomerase which couples the free energy of ATP hydrolysis to the introduction of negative supercoils into DNA. Amino acids in proximity to bound nonhydrolyzable ATP analog (AMP · PNP) or novobiocin in the gyrase B (GyrB) subunit crystal structures were examined for their roles in enzyme function and novobiocin resistance by site-directed mutagenesis. Purified Escherichia coli GyrB mutant proteins were complexed with the gyrase A subunit to form the functional A2B2 gyrase enzyme. Mutant proteins with alanine substitutions at residues E42, N46, E50, D73, R76, G77, and I78 had reduced or no detectable ATPase activity, indicating a role for these residues in ATP hydrolysis. Interestingly, GyrB proteins with P79A and K103A substitutions retained significant levels of ATPase activity yet demonstrated no DNA supercoiling activity, even with 40-fold more enzyme than the wild-type enzyme, suggesting that these amino acid side chains have a role in the coupling of the two activities. All enzymes relaxed supercoiled DNA to the same extent as the wild-type enzyme did, implying that only ATP-dependent reactions were affected. Mutant genes were examined in vivo for their abilities to complement a temperature-sensitive E. coli gyrB mutant, and the activities correlated well with the in vitro activities. We show that the known R136 novobiocin resistance mutations bestow a significant loss of inhibitor potency in the ATPase assay. Four new residues (D73, G77, I78, and T165) that, when changed to the appropriate amino acid, result in both significant levels of novobiocin resistance and maintain in vivo function were identified in E. coli.


Bioorganic & Medicinal Chemistry Letters | 2010

Discovery of pyrazolthiazoles as novel and potent inhibitors of bacterial gyrase.

Steven Ronkin; Michael C. Badia; Steve Bellon; Anne-Laure Grillot; Christian H. Gross; Trudy H. Grossman; Nagraj Mani; Jonathan D. Parsons; Dean Stamos; Martin Trudeau; Yunyi Wei; Paul S. Charifson

Bacterial DNA gyrase is an attractive target for the investigation of new antibacterial agents. Inhibitors of the GyrB subunit, which contains the ATP-binding site, are described in this communication. Novel, substituted 5-(1H-pyrazol-3-yl)thiazole compounds were identified as inhibitors of bacterial gyrase. Structure-guided optimization led to greater enzymatic potency and moderate antibacterial potency. Data are presented for the demonstration of selective enzyme inhibition of Escherichia coli GyrB over Staphylococcus aureus GyrB.


Bioorganic & Medicinal Chemistry Letters | 2009

4-(Benzimidazol-2-yl)-1,2,5-oxadiazol-3-ylamine derivatives: potent and selective p70S6 kinase inhibitors.

Upul K. Bandarage; Brian Hare; Jonathan D. Parsons; Ly Pham; Craig Marhefka; Guy W. Bemis; Qing Tang; Cameron Stuver Moody; Steve Rodems; Sundeep Shah; Christopher S. Adams; Jose Bravo; Emmanuelle Charonnet; Vladimir Savic; Jon H. Come; Jeremy Green

We report herein the design and synthesis of 4-(benzimidazol-2-yl)-1,2,5-oxadiazol-3-amine derivatives as inhibitors of p70S6 kinase. Screening hits containing the 4-(benzimidazol-2-yl)-1,2,5-oxadiazol-3-ylamine scaffold were optimized for p70S6K potency and selectivity against related kinases. Structure-based design employing an active site homology model derived from PKA led to the preparation of benzimidazole 5-substituted compounds 26 and 27 as highly potent inhibitors (K(i) <1nM) of p70S6K, with >100-fold selectivity against PKA, ROCK and GSK3.


Bioorganic & Medicinal Chemistry Letters | 2012

Design, synthesis and biological evaluation of potent NAD+-dependent DNA ligase inhibitors as potential antibacterial agents. Part 2: 4-Amino-pyrido[2,3-d]pyrimidin-5(8H)-ones

Tiansheng Wang; Leonard Duncan; Wenxin Gu; Hardwin O’Dowd; Yunyi Wei; Emanuele Perola; Jonathan D. Parsons; Christian H. Gross; Cameron Stuver Moody; S.J. Ryan Arends; Paul S. Charifson

A series of 4-amino-pyrido[2,3-d]pyrimidin-5(8H)-ones were designed and synthesized as a novel class of inhibitors of NAD(+)-dependent DNA ligase that possess potency against Gram-positive bacteria.


Bioorganic & Medicinal Chemistry Letters | 2012

Design, synthesis and biological evaluation of potent NAD+-dependent DNA ligase inhibitors as potential antibacterial agents. Part I: Aminoalkoxypyrimidine carboxamides

Wenxin Gu; Tiansheng Wang; Francois Maltais; Brian Ledford; Joseph M. Kennedy; Yunyi Wei; Christian H. Gross; Jonathan D. Parsons; Leonard Duncan; S.J. Ryan Arends; Cameron Stuver Moody; Emanuele Perola; Jeremy Green; Paul S. Charifson

A series of 2,6-disubstituted aminoalkoxypyrimidine carboxamides (AAPCs) with potent inhibition of bacterial NAD(+)-dependent DNA ligase was discovered through the use of structure-guided design. Two subsites in the NAD(+)-binding pocket were explored to modulate enzyme inhibitory potency: a hydrophobic selectivity region was explored through a series of 2-alkoxy substituents while the sugar (ribose) binding region of NAD(+) was explored via 6-alkoxy substituents.


Archive | 2007

5- (2-furyl)-1, 3-thiazole derivatives useful as inhibitors of phosphatidylinositol 3-kinase

Tiansheng Wang; Jeremy Green; Mark Cornebise; Brian Ledford; Jonathan D. Parsons; Adam Tanner; James Westcott

Collaboration


Dive into the Jonathan D. Parsons's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yunyi Wei

Vertex Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dean Stamos

Vertex Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Jeremy Green

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Nagraj Mani

Vertex Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge