Jonathan E. Bird
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jonathan E. Bird.
Cell | 2010
Shin-ichiro Kitajiri; Takeshi Sakamoto; Inna A. Belyantseva; Richard J. Goodyear; Ruben Stepanyan; Ikuko Fujiwara; Jonathan E. Bird; Saima Riazuddin; Sheikh Riazuddin; Zubair M. Ahmed; Jenny E. Hinshaw; James R. Sellers; James R. Bartles; John A. Hammer; Guy P. Richardson; Andrew J. Griffith; Gregory I. Frolenkov; Thomas B. Friedman
Inner ear hair cells detect sound through deflection of mechanosensory stereocilia. Each stereocilium is supported by a paracrystalline array of parallel actin filaments that are packed more densely at the base, forming a rootlet extending into the cell body. The function of rootlets and the molecules responsible for their formation are unknown. We found that TRIOBP, a cytoskeleton-associated protein mutated in human hereditary deafness DFNB28, is localized to rootlets. In vitro, purified TRIOBP isoform 4 protein organizes actin filaments into uniquely dense bundles reminiscent of rootlets but distinct from bundles formed by espin, an actin crosslinker in stereocilia. We generated mutant Triobp mice (Triobp(Deltaex8/Deltaex8)) that are profoundly deaf. Stereocilia of Triobp(Deltaex8/Deltaex8) mice develop normally but fail to form rootlets and are easier to deflect and damage. Thus, F-actin bundling by TRIOBP provides durability and rigidity for normal mechanosensitivity of stereocilia and may contribute to resilient cytoskeletal structures elsewhere.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Jonathan E. Bird; Yasuharu Takagi; Neil Billington; Marie-Paule Strub; James R. Sellers; Thomas B. Friedman
Significance Mutations in unconventional myosin 15 cause nonsyndromic autosomal recessive deafness, a common form of hereditary hearing loss in humans. Myosin 15 is required for the development of hair cell mechanosensory stereocilia that detect sounds within the inner ear. To our knowledge, our work offers the first insight into the biophysical properties of purified myosin 15. Using ensemble and single molecule techniques, we show that myosin 15 is a high-duty ratio motor, which is a characteristic of myosins that can move processively along actin filaments. We also introduce a new strategy for producing myosins by chaperone coexpression in Spodoptera frugiperda insect cells. This approach may help optimize expression of skeletal and cardiac muscle myosins, which are emerging as translational drug targets but are presently refractory to larger-scale purification. Unconventional myosin 15 is a molecular motor expressed in inner ear hair cells that transports protein cargos within developing mechanosensory stereocilia. Mutations of myosin 15 cause profound hearing loss in humans and mice; however, the properties of this motor and its regulation within the stereocilia organelle are unknown. To address these questions, we expressed a subfragment 1-like (S1) truncation of mouse myosin 15, comprising the predicted motor domain plus three light-chain binding sites. Following unsuccessful attempts to express functional myosin 15-S1 using the Spodoptera frugiperda (Sf9)-baculovirus system, we discovered that coexpression of the muscle-myosin–specific chaperone UNC45B, in addition to the chaperone heat-shock protein 90 (HSP90) significantly increased the yield of functional protein. Surprisingly, myosin 15-S1 did not bind calmodulin with high affinity. Instead, the IQ domains bound essential and regulatory light chains that are normally associated with class II myosins. We show that myosin 15-S1 is a barbed-end–directed motor that moves actin filaments in a gliding assay (∼430 nm·s−1 at 30 °C), using a power stroke of 7.9 nm. The maximum ATPase rate (kcat ∼6 s−1) was similar to the actin-detachment rate (kdet = 6.2 s−1) determined in single molecule optical trapping experiments, indicating that myosin 15-S1 was rate limited by transit through strongly actin-bound states, similar to other processive myosin motors. Our data further indicate that in addition to folding muscle myosin, UNC45B facilitates maturation of an unconventional myosin. We speculate that chaperone coexpression may be a simple method to optimize the purification of other myosin motors from Sf9 insect cells.
Nature Communications | 2015
Meghan C. Drummond; Melanie Barzik; Jonathan E. Bird; Duan-Sun Zhang; C. Lechene; David P. Corey; Lisa L. Cunningham; Thomas B. Friedman
The maintenance of sensory hair cell stereocilia is critical for lifelong hearing; however, mechanisms of structural homeostasis remain poorly understood. Conflicting models propose that stereocilia F-actin cores are either continually renewed every 24–48 h via a treadmill or are stable, exceptionally long-lived structures. Here to distinguish between these models, we perform an unbiased survey of stereocilia actin dynamics in more than 500 utricle hair cells. Live-imaging EGFP-β-actin or dendra2-β-actin reveal stable F-actin cores with turnover and elongation restricted to stereocilia tips. Fixed-cell microscopy of wild-type and mutant β-actin demonstrates that incorporation of actin monomers into filaments is required for localization to stereocilia tips. Multi-isotope imaging mass spectrometry and live imaging of single differentiating hair cells capture stereociliogenesis and explain uniform incorporation of 15N-labelled protein and EGFP-β-actin into nascent stereocilia. Collectively, our analyses support a model in which stereocilia actin cores are stable structures that incorporate new F-actin only at the distal tips.
eLife | 2015
Qing Fang; Artur A. Indzhykulian; Mirna Mustapha; Gavin P. Riordan; David F. Dolan; Thomas B. Friedman; Inna A. Belyantseva; Gregory I. Frolenkov; Sally A. Camper; Jonathan E. Bird
The precise assembly of inner ear hair cell stereocilia into rows of increasing height is critical for mechanotransduction and the sense of hearing. Yet, how the lengths of actin-based stereocilia are regulated remains poorly understood. Mutations of the molecular motor myosin 15 stunt stereocilia growth and cause deafness. We found that hair cells express two isoforms of myosin 15 that differ by inclusion of an 133-kDa N-terminal domain, and that these isoforms can selectively traffic to different stereocilia rows. Using an isoform-specific knockout mouse, we show that hair cells expressing only the small isoform remarkably develop normal stereocilia bundles. However, a critical subset of stereocilia with active mechanotransducer channels subsequently retracts. The larger isoform with the 133-kDa N-terminal domain traffics to these specialized stereocilia and prevents disassembly of their actin core. Our results show that myosin 15 isoforms can navigate between functionally distinct classes of stereocilia, and are independently required to assemble and then maintain the intricate hair bundle architecture. DOI: http://dx.doi.org/10.7554/eLife.08627.001
Human Mutation | 2016
Atteeq U. Rehman; Jonathan E. Bird; Rabia Faridi; Mohsin Shahzad; Sujay Shah; Kwanghyuk Lee; Shaheen N. Khan; Ayesha Imtiaz; Zubair M. Ahmed; Saima Riazuddin; Regie Lyn P. Santos-Cortez; Wasim Ahmad; Suzanne M. Leal; Sheikh Riazuddin; Thomas B. Friedman
Deafness in humans is a common neurosensory disorder and is genetically heterogeneous. Across diverse ethnic groups, mutations of MYO15A at the DFNB3 locus appear to be the third or fourth most common cause of autosomal‐recessive, nonsyndromic deafness. In 49 of the 67 exons of MYO15A, there are currently 192 recessive mutations identified, including 14 novel mutations reported here. These mutations are distributed uniformly across MYO15A with one enigmatic exception; the alternatively spliced giant exon 2, encoding 1,233 residues, has 17 truncating mutations but no convincing deafness‐causing missense mutations. MYO15A encodes three distinct isoform classes, one of which is 395 kDa (3,530 residues), the largest member of the myosin superfamily of molecular motors. Studies of Myo15 mouse models that recapitulate DFNB3 revealed two different pathogenic mechanisms of hearing loss. In the inner ear, myosin 15 is necessary both for the development and the long‐term maintenance of stereocilia, mechanosensory sound‐transducing organelles that extend from the apical surface of hair cells. The goal of this Mutation Update is to provide a comprehensive review of mutations and functions of MYO15A.
European Journal of Human Genetics | 2016
Carmen C. Brewer; Christopher Zalewski; Kelly A. King; Oliver Zobay; Alison Riley; Melanie A. Ferguson; Jonathan E. Bird; Margaret M McCabe; Linda J. Hood; Dennis Drayna; Andrew J. Griffith; Robert J. Morell; Thomas B. Friedman; David R. Moore
Recent insight into the genetic bases for autism spectrum disorder, dyslexia, stuttering, and language disorders suggest that neurogenetic approaches may also reveal at least one etiology of auditory processing disorder (APD). A person with an APD typically has difficulty understanding speech in background noise despite having normal pure-tone hearing sensitivity. The estimated prevalence of APD may be as high as 10% in the pediatric population, yet the causes are unknown and have not been explored by molecular or genetic approaches. The aim of our study was to determine the heritability of frequency and temporal resolution for auditory signals and speech recognition in noise in 96 identical or fraternal twin pairs, aged 6–11 years. Measures of auditory processing (AP) of non-speech sounds included backward masking (temporal resolution), notched noise masking (spectral resolution), pure-tone frequency discrimination (temporal fine structure sensitivity), and nonsense syllable recognition in noise. We provide evidence of significant heritability, ranging from 0.32 to 0.74, for individual measures of these non-speech-based AP skills that are crucial for understanding spoken language. Identification of specific heritable AP traits such as these serve as a basis to pursue the genetic underpinnings of APD by identifying genetic variants associated with common AP disorders in children and adults.
Biophysical Journal | 2011
Chisako Izumi; Jonathan E. Bird; Kuni H. Iwasa
How proteins evolve new functionality is an important question in biology; prestin (SLC26A5) is a case in point. Prestin drives outer hair cell somatic motility and amplifies mechanical vibrations in the mammalian cochlea. The motility of mammalian prestin is analogous to piezoelectricity, in which charge transfer is coupled to changes in membrane area occupied by the protein. Intriguingly, nonmammalian prestin orthologs function as anion exchangers but are apparently nonmotile. We previously found that mammalian prestin is sensitive to membrane thickness, suggesting that prestins extended conformation has a thinner hydrophobic height in the lipid bilayer. Because prestin-based motility is a mammalian specialization, we initially hypothesized that nonmotile prestin orthologs, while functioning as anion transporters, should be much less sensitive to membrane thickness. We found the exact opposite to be true. Chicken prestin was the most sensitive to thickness changes, displaying the largest shift in voltage dependence. Platypus prestin displayed an intermediate response to membrane thickness and gerbil prestin was the least sensitive. To explain these observations, we present a theory where force production, rather than displacement, was selected for the evolution of prestin as a piezoelectric membrane motor.
eLife | 2018
Luca Melli; Neil Billington; Sara A. Sun; Jonathan E. Bird; Attila Nagy; Thomas B. Friedman; Yasuharu Takagi; James R. Sellers
Nonmusclemyosin 2 (NM-2) powers cell motility and tissue morphogenesis by assembling into bipolar filaments that interact with actin. Although the enzymatic properties of purified NM-2 motor fragments have been determined, the emergent properties of filament ensembles are unknown. Using single myosin filament in vitro motility assays, we report fundamental differences in filaments formed of different NM-2 motors. Filaments consisting of NM2-B moved processively along actin, while under identical conditions, NM2-A filaments did not. By more closely mimicking the physiological milieu, either by increasing solution viscosity or by co-polymerization with NM2-B, NM2-A containing filaments moved processively. Our data demonstrate that both the kinetic and mechanical properties of these two myosins, in addition to the stochiometry of NM-2 subunits, can tune filament mechanical output. We propose altering NM-2 filament composition is a general cellular strategy for tailoring force production of filaments to specific functions, such as maintaining tension or remodeling actin.
Molecular Biology of the Cell | 2017
Jonathan E. Bird; Melanie Barzik; Meghan C. Drummond; Daniel C. Sutton; Spencer M. Goodman; Eva L. Morozko; Stacey M. Cole; Alexandra K. Boukhvalova; Jennifer M. Skidmore; Diana Syam; Elizabeth Wilson; Tracy S. Fitzgerald; Atteeq U. Rehman; Donna M. Martin; Erich T. Boger; Inna A. Belyantseva; Thomas B. Friedman
Nanoscale pulldown (NanoSPD) miniaturizes the concept of affinity pulldown to detect protein–protein interactions in live cells. NanoSPD hijacks the myosin-based intracellular trafficking machinery to assess interactions under physiological buffer conditions and is microscopy-based, allowing for sensitive detection and quantification.
Nature Communications | 2018
Stephanie A. Mauriac; Yeri E. Hien; Jonathan E. Bird; Steve Dos-Santos Carvalho; Ronan Peyroutou; Sze Chim Lee; Maïté Moreau; Jean-Michel Blanc; Aysegul Gezer; Chantal Medina; Olivier Thoumine; Sandra Beer-Hammer; Thomas B. Friedman; Lukas Rüttiger; Andrew Forge; Bernd Nürnberg; Nathalie Sans; Mireille Montcouquiol
This corrects the article DOI: 10.1038/ncomms14907.