Jonathan E. Gale
University College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jonathan E. Gale.
Nature | 2007
Nicolas X. Tritsch; Eunyoung Yi; Jonathan E. Gale; Elisabeth Glowatzki; Dwight E. Bergles
Spontaneous activity in the developing auditory system is required for neuronal survival as well as the refinement and maintenance of tonotopic maps in the brain. However, the mechanisms responsible for initiating auditory nerve firing in the absence of sound have not been determined. Here we show that supporting cells in the developing rat cochlea spontaneously release ATP, which causes nearby inner hair cells to depolarize and release glutamate, triggering discrete bursts of action potentials in primary auditory neurons. This endogenous, ATP-mediated signalling synchronizes the output of neighbouring inner hair cells, which may help refine tonotopic maps in the brain. Spontaneous ATP-dependent signalling rapidly subsides after the onset of hearing, thereby preventing this experience-independent activity from interfering with accurate encoding of sound. These data indicate that supporting cells in the organ of Corti initiate electrical activity in auditory nerves before hearing, pointing to an essential role for peripheral, non-sensory cells in the development of central auditory pathways.
Nature | 2012
Eliana Marinari; Aida Mehonic; Scott Curran; Jonathan E. Gale; Thomas Duke; Buzz Baum
The development and maintenance of an epithelium requires finely balanced rates of growth and cell death. However, the mechanical and biochemical mechanisms that ensure proper feedback control of tissue growth, which when deregulated contribute to tumorigenesis, are poorly understood. Here we use the fly notum as a model system to identify a novel process of crowding-induced cell delamination that balances growth to ensure the development of well-ordered cell packing. In crowded regions of the tissue, a proportion of cells undergo a serial loss of cell–cell junctions and a progressive loss of apical area, before being squeezed out by their neighbours. This path of delamination is recapitulated by a simple computational model of epithelial mechanics, in which stochastic cell loss relieves overcrowding as the system tends towards equilibrium. We show that this process of delamination is mechanistically distinct from apoptosis-mediated cell extrusion and precedes the first signs of cell death. Overall, this analysis reveals a simple mechanism that buffers epithelia against variations in growth. Because live-cell delamination constitutes a mechanistic link between epithelial hyperplasia and cell invasion, this is likely to have important implications for our understanding of the early stages of cancer development.
Nature Communications | 2014
Thomas S. Blacker; Zoë F. Mann; Jonathan E. Gale; Mathias Ziegler; Angus J. Bain; Gyorgy Szabadkai; Michael R. Duchen
NAD is a key determinant of cellular energy metabolism. In contrast, its phosphorylated form, NADP, plays a central role in biosynthetic pathways and antioxidant defence. The reduced forms of both pyridine nucleotides are fluorescent in living cells but they cannot be distinguished, as they are spectrally identical. Here, using genetic and pharmacological approaches to perturb NAD(P)H metabolism, we find that fluorescence lifetime imaging (FLIM) differentiates quantitatively between the two cofactors. Systematic manipulations to change the balance between oxidative and glycolytic metabolism suggest that these states do not directly impact NAD(P)H fluorescence decay rates. The lifetime changes observed in cancers thus likely reflect shifts in the NADPH/NADH balance. Using a mathematical model, we use these experimental data to quantify the relative levels of NADH and NADPH in different cell types of a complex tissue, the mammalian cochlea. This reveals NADPH-enriched populations of cells, raising questions about their distinct metabolic roles.
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES , 255 (1344) pp. 243-249. (1994) | 1994
Jonathan E. Gale; Jonathan Felix Ashmore
The properties of the basolateral membrane of cochlear outer hair cells were studied under whole-cell patch clamp to measure currents and capacitance changes associated with mechanical deformation. Stretching the membrane of outer hair cells along the cell axis generated a transient inward current, and subsequent relaxation of the membrane produced a similar transient outward current. These mechanically activated currents were velocity dependent with a mean sensitivity of 29 pA s mm-1. Unlike ionic currents, these currents did not reverse, but reached a peak magnitude at —33 mV. Stretching the cell also resulted in a measurable capacitance decrease of 0.3—1.1 pF μm-1. These results suggest that membrane stretch can induce a rapid charge movement resulting from the reversal of the electromechanical transduction process in outer hair cells.
Current Biology | 2004
Jonathan E. Gale; Valeria Piazza; Catalin Dacian Ciubotaru; Fabio Mammano
Our sense of hearing requires functional sensory hair cells. Throughout life those hair cells are subjected to various traumas, the most common being loud sound. The primary effect of acoustic trauma is manifested as damage to the delicate mechanosensory apparatus of the hair cell stereocilia. This may eventually lead to hair cell death and irreversible deafness. Little is known about the way in which noxious sound stimuli affect individual cellular components of the auditory sensory epithelium. However, studies in different types of cell cultures have shown that damage and mechanical stimulation can activate changes in intracellular free calcium concentration ([Ca(2+)](i)) and elicit intercellular Ca(2+) waves. Thus an attractive hypothesis is that changes in [Ca(2+)](i), propagating as a wave through support cells in the organ of Corti, may constitute a fundamental mechanism to signal the occurrence of hair cell damage. The mechanism we describe here exhibits nanomolar sensitivity to extracellular ATP, involves regenerative propagation of intercellular calcium waves due to ATP originating from hair cells, and depends on functional IP(3)-sensitive intracellular stores in support cells.
PLOS ONE | 2007
Liam J. Drew; François Rugiero; Paolo Cesare; Jonathan E. Gale; Bjarke Abrahamsen; Sarah Bowden; Sebastian Heinzmann; Michelle Robinson; Andreas Brust; Barbara Colless; Richard J. Lewis; John N. Wood
Little is known about the molecular basis of somatosensory mechanotransduction in mammals. We screened a library of peptide toxins for effects on mechanically activated currents in cultured dorsal root ganglion neurons. One conopeptide analogue, termed NMB-1 for noxious mechanosensation blocker 1, selectively inhibits (IC50 1 µM) sustained mechanically activated currents in a subset of sensory neurons. Biotinylated NMB-1 retains activity and binds selectively to peripherin-positive nociceptive sensory neurons. The selectivity of NMB-1 was confirmed by the fact that it has no inhibitory effects on voltage-gated sodium and calcium channels, or ligand-gated channels such as acid-sensing ion channels or TRPA1 channels. Conversely, the tarantula toxin, GsMTx-4, which inhibits stretch-activated ion channels, had no effects on mechanically activated currents in sensory neurons. In behavioral assays, NMB-1 inhibits responses only to high intensity, painful mechanical stimulation and has no effects on low intensity mechanical stimulation or thermosensation. Unexpectedly, NMB-1 was found to also be an inhibitor of rapid FM1-43 loading (a measure of mechanotransduction) in cochlear hair cells. These data demonstrate that pharmacologically distinct channels respond to distinct types of mechanical stimuli and suggest that mechanically activated sustained currents underlie noxious mechanosensation. NMB-1 thus provides a novel diagnostic tool for the molecular definition of channels involved in hearing and pressure-evoked pain.
Journal of Cell Science | 2014
Dorothy Kuipers; Aida Mehonic; Mihoko Kajita; Loïc Peter; Yasuyuki Fujita; Tom Duke; Guillaume Charras; Jonathan E. Gale
ABSTRACT Epithelial cells maintain an essential barrier despite continuously undergoing mitosis and apoptosis. Biological and biophysical mechanisms have evolved to remove dying cells while maintaining that barrier. Cell extrusion is thought to be driven by a multicellular filamentous actin ring formed by neighbouring cells, the contraction of which provides the mechanical force for extrusion, with little or no contribution from the dying cell. Here, we use live confocal imaging, providing time-resolved three-dimensional observations of actomyosin dynamics, to reveal new mechanical roles for dying cells in their own extrusion from monolayers. Based on our observations, the clearance of dying cells can be subdivided into two stages. The first, previously unidentified, stage is driven by the dying cell, which exerts tension on its neighbours through the action of a cortical contractile F-actin and myosin ring at the cell apex. The second stage, consistent with previous studies, is driven by a multicellular F-actin ring in the neighbouring cells that moves from the apical to the basal plane to extrude the dying cell. Crucially, these data reinstate the dying cell as an active physical participant in cell extrusion.
The Journal of Neuroscience | 2010
Jonathan E. Bird; Nicolas Daudet; Mark E. Warchol; Jonathan E. Gale
Epithelial homeostasis is essential for sensory transduction in the auditory and vestibular organs of the inner ear, but how it is maintained during trauma is poorly understood. To examine potential repair mechanisms, we expressed β-actin-enhanced green fluorescent protein (EGFP) in the chick inner ear and used live-cell imaging to study how sensory epithelia responded during aminoglycoside-induced hair cell trauma. We found that glial-like supporting cells used two independent mechanisms to rapidly eliminate dying hair cells. Supporting cells assembled an actin cable at the luminal surface that extended around the pericuticular junction and constricted to excise the stereocilia bundle and cuticular plate from the hair cell soma. Hair bundle excision could occur within 3 min of actin-cable formation. After bundle excision, typically with a delay of up to 2–3 h, supporting cells engulfed and phagocytosed the remaining bundle-less hair cell. Dual-channel recordings with β-actin-EGFP and vital dyes revealed phagocytosis was concurrent with loss of hair cell integrity. We conclude that supporting cells repaired the epithelial barrier before hair cell plasmalemmal integrity was lost and that supporting cell activity was closely linked to hair cell death. Treatment with the Rho-kinase inhibitor Y-27632 did not prevent bundle excision but prolonged phagocytic engulfment and resulted in hair cell corpses accumulating within the epithelium. Our data show that supporting cells not only maintain epithelial integrity during trauma but suggest they may also be an integral part of the hair cell death process itself.
Jaro-journal of The Association for Research in Otolaryngology | 2010
Richard J. Goodyear; P. Kevin Legan; Jeffrey R. Christiansen; Bei Xia; Julia Korchagina; Jonathan E. Gale; Mark E. Warchol; Jeffrey T. Corwin; Guy P. Richardson
Hair cells, the mechanosensitive receptor cells of the inner ear, are critical for our senses of hearing and balance. The small number of these receptor cells in the inner ear has impeded the identification and characterization of proteins important for hair cell function. The binding specificity of monoclonal antibodies provides a means for identifying hair cell-specific proteins and isolating them for further study. We have generated a monoclonal antibody, termed hair cell soma-1 (HCS-1), which specifically immunolabels hair cells in at least five vertebrate classes, including sharks and rays, bony fish, amphibians, birds, and mammals. We used HCS-1 to immunoprecipitate the cognate antigen and identified it as otoferlin, a member of the ferlin protein family. Mutations in otoferlin underlie DFNB9, a recessive, nonsyndromic form of prelingual deafness characterized as an auditory neuropathy. Using immunocytochemistry, we find that otoferlin is associated with the entire basolateral membrane of the hair cells and with vesicular structures distributed throughout most of the hair cell cytoplasm. Biochemical assays indicate that otoferlin is tightly associated with membranes, as it is not solubilized by alterations in calcium or salt concentrations. HCS-1 immunolabeling does not co-localize with ribeye, a constituent of synaptic ribbons, suggesting that otoferlin may, in addition to its proposed function in synaptic vesicle release, play additional roles in hair cells.
Development | 2015
Aida Costa; Luis Sanchez-Guardado; Stephanie Juniat; Jonathan E. Gale; Nicolas Daudet; Domingos Henrique
ABSTRACT Mechanosensory hair cells (HCs) are the primary receptors of our senses of hearing and balance. Elucidation of the transcriptional networks regulating HC fate determination and differentiation is crucial not only to understand inner ear development but also to improve cell replacement therapies for hearing disorders. Here, we show that combined expression of the transcription factors Gfi1, Pou4f3 and Atoh1 can induce direct programming towards HC fate, both during in vitro mouse embryonic stem cell differentiation and following ectopic expression in chick embryonic otic epithelium. Induced HCs (iHCs) express numerous HC-specific markers and exhibit polarized membrane protrusions reminiscent of stereociliary bundles. Transcriptome profiling confirms the progressive establishment of a HC-specific gene signature during in vitro iHC programming. Overall, this work provides a novel approach to achieve robust and highly efficient HC production in vitro, which could be used as a model to study HC development and to drive inner ear HC regeneration. Highlighted article: Expression of Atoh1, Pou4f3 and Gfi1 in mouse embryonic stem cells efficiently induces inner ear hair cell differentiation in culture.