Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan E. Katz is active.

Publication


Featured researches published by Jonathan E. Katz.


Nature Biotechnology | 2012

A Cross-platform Toolkit for Mass Spectrometry and Proteomics

Matthew C. Chambers; Brendan MacLean; Robert Burke; Dario Amodei; Daniel Ruderman; Steffen Neumann; Laurent Gatto; Bernd Fischer; Brian Pratt; Katherine Hoff; Darren Kessner; Natalie Tasman; Nicholas J. Shulman; Barbara Frewen; Tahmina A Baker; Mi-Youn Brusniak; Christopher Paulse; David M. Creasy; Lisa Flashner; Kian Kani; Chris Moulding; Sean L. Seymour; Lydia M Nuwaysir; Brent Lefebvre; Frank Kuhlmann; Joe Roark; Paape Rainer; Suckau Detlev; Tina Hemenway; Andreas Huhmer

Mass-spectrometry-based proteomics has become an important component of biological research. Numerous proteomics methods have been developed to identify and quantify the proteins in biological and clinical samples1, identify pathways affected by endogenous and exogenous perturbations2, and characterize protein complexes3. Despite successes, the interpretation of vast proteomics datasets remains a challenge. There have been several calls for improvements and standardization of proteomics data analysis frameworks, as well as for an application-programming interface for proteomics data access4,5. In response, we have developed the ProteoWizard Toolkit, a robust set of open-source, software libraries and applications designed to facilitate proteomics research. The libraries implement the first-ever, non-commercial, unified data access interface for proteomics, bridging field-standard open formats and all common vendor formats. In addition, diverse software classes enable rapid development of vendor-agnostic proteomics software. Additionally, ProteoWizard projects and applications, building upon the core libraries, are becoming standard tools for enabling significant proteomics inquiries.


Molecular & Cellular Proteomics | 2011

A High-Confidence Human Plasma Proteome Reference Set with Estimated Concentrations in PeptideAtlas

Terry Farrah; Eric W. Deutsch; Gilbert S. Omenn; David S. Campbell; Zhi Sun; Julie Bletz; Parag Mallick; Jonathan E. Katz; Johan Malmström; Reto Ossola; Julian D. Watts; Biaoyang Lin; Hui Zhang; Robert L. Moritz; Ruedi Aebersold

Human blood plasma can be obtained relatively noninvasively and contains proteins from most, if not all, tissues of the body. Therefore, an extensive, quantitative catalog of plasma proteins is an important starting point for the discovery of disease biomarkers. In 2005, we showed that different proteomics measurements using different sample preparation and analysis techniques identify significantly different sets of proteins, and that a comprehensive plasma proteome can be compiled only by combining data from many different experiments. Applying advanced computational methods developed for the analysis and integration of very large and diverse data sets generated by tandem MS measurements of tryptic peptides, we have now compiled a high-confidence human plasma proteome reference set with well over twice the identified proteins of previous high-confidence sets. It includes a hierarchy of protein identifications at different levels of redundancy following a clearly defined scheme, which we propose as a standard that can be applied to any proteomics data set to facilitate cross-proteome analyses. Further, to aid in development of blood-based diagnostics using techniques such as selected reaction monitoring, we provide a rough estimate of protein concentrations using spectral counting. We identified 20,433 distinct peptides, from which we inferred a highly nonredundant set of 1929 protein sequences at a false discovery rate of 1%. We have made this resource available via PeptideAtlas, a large, multiorganism, publicly accessible compendium of peptides identified in tandem MS experiments conducted by laboratories around the world.


Molecular & Cellular Proteomics | 2003

Automated Identification of Putative Methyltransferases from Genomic Open Reading Frames

Jonathan E. Katz; Mensur Dlakić; Steven Clarke

We have analyzed existing methodologies and created novel methodologies for the automatic assignment of S-adenosylmethionine (AdoMet)-dependent methyltransferase functionality to genomic open reading frames based on predicted protein sequences. A large class of the AdoMet-dependent methyltransferases shares a common binding motif for the AdoMet cofactor in the form of a seven-strand twisted β-sheet; this structural similarity is mirrored in a degenerate sequence similarity that we refer to as methyltransferase signature motifs. These motifs are the basis of our assignments. We find that simple pattern matching based on the motif sequence is of limited utility and that a new method of “sensitized matrices for scoring methyltransferases” (SM2) produced with modified versions of the MEME and MAST tools gives greatly improved results for the Saccharomyces cerevisiae yeast genome. From our analysis, we conclude that this class of methyltransferases makes up ∼0.6–1.6% of the genes in the yeast, human, mouse, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, and Escherichia coli genomes. We provide lists of unidentified genes that we consider to have a high probability of being methyltransferases for future biochemical analyses.


Structure | 2001

Structure of Thermotoga maritima stationary phase survival protein SurE: a novel acid phosphatase.

R.-G. Zhang; Tatiana Skarina; Jonathan E. Katz; Steven Beasley; A. Khachatryan; S. Vyas; C.H. Arrowsmith; Steven Clarke; A. Edwards; Andrzej Joachimiak; Alexei Savchenko

BACKGROUND The rpoS, nlpD, pcm, and surE genes are among many whose expression is induced during the stationary phase of bacterial growth. rpoS codes for the stationary-phase RNA polymerase sigma subunit, and nlpD codes for a lipoprotein. The pcm gene product repairs damaged proteins by converting the atypical isoaspartyl residues back to L-aspartyls. The physiological and biochemical functions of surE are unknown, but its importance in stress is supported by the duplication of the surE gene in E. coli subjected to high-temperature growth. The pcm and surE genes are highly conserved in bacteria, archaea, and plants. RESULTS The structure of SurE from Thermotoga maritima was determined at 2.0 A. The SurE monomer is composed of two domains; a conserved N-terminal domain, a Rossman fold, and a C-terminal oligomerization domain, a new fold. Monomers form a dimer that assembles into a tetramer. Biochemical analysis suggests that SurE is an acid phosphatase, with an optimum pH of 5.5-6.2. The active site was identified in the N-terminal domain through analysis of conserved residues. Structure-based site-directed point mutations abolished phosphatase activity. T. maritima SurE intra- and intersubunit salt bridges were identified that may explain the SurE thermostability. CONCLUSIONS The structure of SurE provided information about the proteins fold, oligomeric state, and active site. The protein possessed magnesium-dependent acid phosphatase activity, but the physiologically relevant substrate(s) remains to be identified. The importance of three of the assigned active site residues in catalysis was confirmed by site-directed mutagenesis.


Molecular & Cellular Proteomics | 2010

Peptide Identification from Mixture Tandem Mass Spectra

Jian Wang; Josué Pérez-Santiago; Jonathan E. Katz; Parag Mallick; Nuno Bandeira

The success of high-throughput proteomics hinges on the ability of computational methods to identify peptides from tandem mass spectra (MS/MS). However, a common limitation of most peptide identification approaches is the nearly ubiquitous assumption that each MS/MS spectrum is generated from a single peptide. We propose a new computational approach for the identification of mixture spectra generated from more than one peptide. Capitalizing on the growing availability of large libraries of single-peptide spectra (spectral libraries), our quantitative approach is able to identify up to 98% of all mixture spectra from equally abundant peptides and automatically adjust to varying abundance ratios of up to 10:1. Furthermore, we show how theoretical bounds on spectral similarity avoid the need to compare each experimental spectrum against all possible combinations of candidate peptides (achieving speedups of over five orders of magnitude) and demonstrate that mixture-spectra can be identified in a matter of seconds against proteome-scale spectral libraries. Although our approach was developed for and is demonstrated on peptide spectra, we argue that the generality of the methods allows for their direct application to other types of spectral libraries and mixture spectra.


Clinical Cancer Research | 2007

β-2-Microglobulin Is an Androgen-Regulated Secreted Protein Elevated in Serum of Patients with Advanced Prostate Cancer

Mitchell E. Gross; Irina Top; Isett Laux; Jonathan E. Katz; John Curran; Charles Tindell; David B. Agus

Purpose: A better understanding of secreted proteins may lead to the discovery of new biomarkers, which, along with prostate-specific antigen (PSA), may be useful in the diagnosis and treatment of prostate cancer patients. Experimental Design: Conditioned medium was collected from LNCaP cells following stimulation with methyltrienolone (R1881), 17β-estradiol (estradiol), or interleukin-6 and analyzed for differential protein expression with surface-enhanced laser desorption/ionization-time of flight mass spectrometry. Quantitative reverse transcription-PCR, immunoblots, and ELISA were used to measure β-2-microglobulin (B2M) message and protein levels in cells, conditioned medium, and serum. Results: Surface-enhanced laser desorption/ionization-time of flight revealed that many peaks were induced or repressed following stimulation with R1881 or estradiol. A peak of interest centered at 11.8 kDa was chosen for additional analysis. Immunodepletion identified the peak of interest as B2M. Reverse transcription-PCR and immunoblots confirmed that PSA and B2M were induced by R1881. However, unlike PSA, B2M was not increased on stimulation with estradiol or interleukin-6. Human B2M is identified in the serum of mice bearing human prostate cancer xenograft. B2M is expressed in human prostate cancer cell lines and tissues. Serum B2M levels are elevated in patients with metastatic, androgen-independent prostate cancer. Conclusions: B2M is a secreted protein expressed in prostate cancer, which is more specific for androgen stimulation than PSA under the conditions tested. Additional studies are warranted to explore if B2M is as useful marker for prostate cancer. Identification of proteins secreted from cancer cells in preclinical models may be a useful strategy for biomarker discovery.


Journal of Proteome Research | 2008

Precursor-ion mass re-estimation improves peptide identification on hybrid instruments.

Roland Luethy; Darren Kessner; Jonathan E. Katz; Brendan MacLean; Robert A. Grothe; Kian Kani; Vitor M. Faça; Sharon J. Pitteri; Samir M. Hanash; David B. Agus; Parag Mallick

Mass spectrometry-based proteomics experiments have become an important tool for studying biological systems. Identifying the proteins in complex mixtures by assigning peptide fragmentation spectra to peptide sequences is an important step in the proteomics process. The 1-2 ppm mass-accuracy of hybrid instruments, like the LTQ-FT, has been cited as a key factor in their ability to identify a larger number of peptides with greater confidence than competing instruments. However, in replicate experiments of an 18-protein mixture, we note parent masses deviate 171 ppm, on average, for ion-trap data directed identifications and 8 ppm, on average, for preview Fourier transform (FT) data directed identifications. These deviations are neither caused by poor calibration nor by excessive ion-loading and are most likely due to errors in parent mass estimation. To improve these deviations, we introduce msPrefix, a program to re-estimate a peptides parent mass from an associated high-accuracy full-scan survey spectrum. In 18-protein mixture experiments, msPrefix parent mass estimates deviate only 1 ppm, on average, from the identified peptides. In a cell lysate experiment searched with a tolerance of 50 ppm, 2295 peptides were confidently identified using native data and 4560 using msPrefixed data. Likewise, in a plasma experiment searched with a tolerance of 50 ppm, 326 peptides were identified using native data and 1216 using msPrefixed data. msPrefix is also able to determine which MS/MS spectra were possibly derived from multiple precursor ions. In complex mixture experiments, we demonstrate that more than 50% of triggered MS/MS may have had multiple precursor ions and note that spectra with multiple candidate ions are less likely to result in an identification using TANDEM. These results demonstrate integration of msPrefix into traditional shotgun proteomics workflows significantly improves identification results.


Cellular Immunology | 1986

Mechanism of NK activation by OK-432 (Streptococcus pyogenes): I. Spontaneous release of NKCF and augmentation of NKCF production following stimulation with NK target cells☆

Benjamin Bonavida; Jonathan E. Katz; Takashi Hoshino

The biological response modifier OK-432 (Picibanil) (manufactured in Japan) is produced by lyophilization of cultures of the low virulent Su strain of group A Streptococcus pyogenes of human origin. This preparation has been shown to have multiple effects on the immune system and has been used as an anti-cancer therapeutic agent in man. It has been shown that OK-432 augments the cytotoxic activity of human natural killer (NK) cells. We have proposed that natural killer cytotoxic factors (NKCF) derived from NK cells play a role in the mechanism of NK cell-mediated cytotoxicity (CMC). The present study investigates the underlying mechanism of the OK-432-mediated enhancement of NK activity by determining whether OK-432 has an effect on the induction and activity of NKCF produced by NK cells. Treatment of peripheral blood lymphocytes (PBL) with OK-432 for 20 hr and wash resulted in significant augmentation of NK CMC and this enhancement was dependent on the concentration of OK-432 used. Coculture of the OK-432-treated PBL with U937 resulted in a several-fold enhanced production of NKCF in the supernatant. The NKCF produced were similar to those produced by untreated effector cells in that they had the same NK target specificity for lysis. The time kinetics of stimulation of PBL with OK-432 for optimal production of NKCF was found to be 8-12 hr. It was also observed that culture of OK-432-treated PBL in the absence of stimulator cells spontaneously release significant amounts of NKCF into the supernatant. The supernatant containing NKCF was tested for interleukin 2 (IL-2) activity using an IL-2-dependent HT-2 line. It was found that there was no direct correlation between the levels of NKCF and IL-2 activity. The results of this study demonstrate that OK-432 stimulates NK cells to produce NKCF in the presence or absence of stimulator cells. The optimum concentration of OK-432-induced augmentation of NK CMC paralleled that seen for optimum NKCF production, suggesting that one mode of action of OK432 is to enhance NKCF production in a manner reminiscent of IFN and IL-2. The results also point out that OK-432 acts by a mechanism independent of the action of IL-2.


International Journal of Cancer | 2005

Prescription drug use and risk of acute myeloid leukemia by French‐American‐British subtype: Results from a Los Angeles County case‐control study

Janice M. Pogoda; Jonathan E. Katz; Roberta McKean-Cowdin; Peter W. Nichols; Ronald K. Ross; Susan Preston-Martin

Chemotherapy is a well‐established risk factor for acute myeloid leukemia (AML) but little is known about other prescription drugs and AML risk. We report data from a population‐based Los Angeles County study in which 299 matched case‐control pairs had complete data on prescription drug use and 88% of cases were subtyped according to the French‐American‐British (FAB) criteria. Cases were diagnosed between 1987 and 1994. Prescription nonsteroidal anti‐inflammatory drug (NSAID) use for at least 4 weeks in the 2 to 10 years before diagnosis was associated with decreased risk (odds ratio = 0.5, 95% confidence interval = 0.3, 1.0; p = 0.04) with dose‐response most evident for FAB subtype M2 (OR = 0.6, CI: 0.1, 2.9 for duration ≤6 months; OR = 0.2, CI: 0.0, 1.6 for >6 months). For subtype M4, ORs increased with increasing duration of benzodiazepine use in the 2 to 10 years before diagnosis (OR = 1.5, CI: 0.3, 9.0 for ≤6 months vs. OR = 5.0, CI: 0.6, 42.8 for >6 months). These results suggest that prescription drugs other than chemotherapy may have FAB subtype‐specific effects on AML risk.


Biochemistry | 2004

3-Isopropylmalate Is the Major Endogenous Substrate of the Saccharomyces cereVisiae trans-Aconitate Methyltransferase †

Jonathan E. Katz; Darren S. Dumlao; Jacob I. Wasserman; Michael G. Lansdown; Michael E. Jung; Kym F. Faull; Steven Clarke

The Saccharomyces cerevisiae Tmt1 gene product is the yeast homologue of the Escherichia coli enzyme that catalyzes the methyl esterification of trans-aconitate, a thermodynamically favored isomer of cis-aconitate and an inhibitor of the citric acid cycle. It has been proposed that methylation may attenuate trans-aconitate inhibition of aconitase and other enzymes of the cycle. Although trans-aconitate is a minor endogenous substrate of the Tmt1 enzyme in extracts of S. cerevisiae, the major endogenous substrate has yet to be identified. We show here that a trimethylsilylated derivative of the major methylated endogenous product of Tmt1 in yeast extracts has an identical gas chromatography retention time and an identical electron impact mass spectrum as one of the two possible monomethyl ester derivatives of (2R,3S)-3-isopropylmalate. (2R,3S)-3-Isopropylmalate is an intermediate of the leucine biosynthetic pathway that shares similar intermediates and reaction chemistry with the portion of the citric acid cycle from oxaloacetate to alpha-ketoglutarate via cis-aconitate. The Tmt1 methyltransferase recognizes (2R,3S)-3-isopropylmalate with similar kinetics as it does trans-aconitate, with respective K(m) values of 127 and 53 microM and V(max) values of 59 and 70 nmol min(-1) mg(-1) of protein in a Tmt1-overexpressed yeast extract. However, we found that isopropylfumarate, the direct homologue of trans-aconitate in the leucine biosynthetic pathway, was at best a very poor substrate for the Tmt1 yeast enzyme. Similarly, the direct homologue of 3-isopropylmalate in the citric acid cycle, isocitrate, is also a very poor substrate. This apparent change in specificity between the intermediates of these two pathways can be understood in terms of the binding of these substrates to the active site. These results suggest that the Tmt1 methyltransferase may work in two different pathways in two different ways: for detoxification in the citric acid cycle and for a possibly novel biosynthetic branch reaction of the leucine biosynthetic pathway.

Collaboration


Dive into the Jonathan E. Katz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David B. Agus

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Steven Clarke

University of California

View shared research outputs
Top Co-Authors

Avatar

Kian Kani

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Mitchell E. Gross

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Kym F. Faull

University of California

View shared research outputs
Top Co-Authors

Avatar

Lindsey Hughes

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Martin W. McIntosh

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Roland Luethy

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Samir M. Hanash

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge