Jonathan Frampton
University of Birmingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jonathan Frampton.
Blood | 2009
Nicola K. Wilson; Diego Miranda-Saavedra; Sarah Kinston; Nicolas Bonadies; Samuel D. Foster; Fernando J. Calero-Nieto; Mark A. Dawson; Ian J. Donaldson; Stephanie Dumon; Jonathan Frampton; Rekin’s Janky; Xiao-Hong Sun; Sarah A. Teichmann; Andrew J. Bannister; Berthold Göttgens
The basic helix-loop-helix transcription factor Scl/Tal1 controls the development and subsequent differentiation of hematopoietic stem cells (HSCs). However, because few Scl target genes have been validated to date, the underlying mechanisms have remained largely unknown. In this study, we have used ChIP-Seq technology (coupling chromatin immunoprecipitation with deep sequencing) to generate a genome-wide catalog of Scl-binding events in a stem/progenitor cell line, followed by validation using primary fetal liver cells and comprehensive transgenic mouse assays. Transgenic analysis provided in vivo validation of multiple new direct Scl target genes and allowed us to reconstruct an in vivo validated network consisting of 17 factors and their respective regulatory elements. By coupling ChIP-Seq in model cell lines with in vivo transgenic validation and sophisticated bioinformatic analysis, we have identified a widely applicable strategy for the reconstruction of stem cell regulatory networks in which biologic material is otherwise limiting. Moreover, in addition to revealing multiple previously unrecognized links to known HSC regulators, as well as novel links to genes not previously implicated in HSC function, comprehensive transgenic analysis of regulatory elements provided substantial new insights into the transcriptional control of several important hematopoietic regulators, including Cbfa2t3h/Eto2, Cebpe, Nfe2, Zfpm1/Fog1, Erg, Mafk, Gfi1b, and Myb.
Molecular and Cellular Biology | 2004
Berthold Göttgens; Cyril Broccardo; María José Sánchez; Sophie Deveaux; George J. Murphy; Joachim R. Göthert; Ekaterini Kotsopoulou; Sarah Kinston; Liz Delaney; Sandie Piltz; Linda M. Barton; Kathy Knezevic; Wendy N. Erber; C. Glenn Begley; Jonathan Frampton; Anthony R. Green
ABSTRACT Analysis of cis-regulatory elements is central to understanding the genomic program for development. The scl/tal-1 transcription factor is essential for lineage commitment to blood cell formation and previous studies identified an scl enhancer (the +18/19 element) which was sufficient to target the vast majority of hematopoietic stem cells, together with hematopoietic progenitors and endothelium. Moreover, expression of scl under control of the +18/19 enhancer rescued blood progenitor formation in scl−/− embryos. However, here we demonstrate by using a knockout approach that, within the endogenous scl locus, the +18/19 enhancer is not necessary for the initiation of scl transcription or for the formation of hematopoietic cells. These results led to the identification of a bifunctional 5′ enhancer (−3.8 element), which targets expression to hematopoietic progenitors and endothelium, contains conserved critical Ets sites, and is bound by Ets family transcription factors, including Fli-1 and Elf-1. These data demonstrate that two geographically distinct but functionally related enhancers regulate scl transcription in hematopoietic progenitors and endothelial cells and suggest that enhancers with dual hematopoietic-endothelial activity may represent a general strategy for regulating blood and endothelial development.
Journal of Biological Chemistry | 2012
Elizabeth J. Haining; Jing Yang; Rebecca L. Bailey; Kabir Khan; Richard Collier; Schickwann Tsai; Steve P. Watson; Jonathan Frampton; Paloma García; Michael G. Tomlinson
Background: ADAM10 is a transmembrane metalloprotease that regulates development, inflammation, cancer, and Alzheimer disease. Results: The TspanC8 subgroup of tetraspanin membrane proteins interacts with and promotes ADAM10 maturation and cell surface localization. Conclusion: This study defines the TspanC8 tetraspanins as essential regulators of ADAM10. Significance: Focusing on specific TspanC8-ADAM10 complexes may allow ADAM10 therapeutic targeting in a cell type- and/or substrate-specific manner. A disintegrin and metalloprotease 10 (ADAM10) is a ubiquitous transmembrane metalloprotease that cleaves the extracellular regions from over 40 different transmembrane target proteins, including Notch and amyloid precursor protein. ADAM10 is essential for embryonic development and is also important in inflammation, cancer, and Alzheimer disease. However, ADAM10 regulation remains poorly understood. ADAM10 is compartmentalized into membrane microdomains formed by tetraspanins, which are a superfamily of 33 transmembrane proteins in humans that regulate clustering and trafficking of certain other transmembrane “partner” proteins. This is achieved by specific tetraspanin-partner interactions, but it is not clear which tetraspanins specifically interact with ADAM10. The aims of this study were to identify which tetraspanins interact with ADAM10 and how they regulate this metalloprotease. Co-immunoprecipitation identified specific ADAM10 interactions with Tspan5, Tspan10, Tspan14, Tspan15, Tspan17, and Tspan33/Penumbra. These are members of the largely unstudied TspanC8 subgroup of tetraspanins, all six of which promoted ADAM10 maturation. Different cell types express distinct repertoires of TspanC8 tetraspanins. Human umbilical vein endothelial cells express relatively high levels of Tspan14, the knockdown of which reduced ADAM10 surface expression and activity. Mouse erythrocytes express predominantly Tspan33, and ADAM10 expression was substantially reduced in the absence of this tetraspanin. In contrast, ADAM10 expression was normal on Tspan33-deficient mouse platelets in which Tspan14 is the major TspanC8 tetraspanin. These results define TspanC8 tetraspanins as essential regulators of ADAM10 maturation and trafficking to the cell surface. This finding has therapeutic implications because focusing on specific TspanC8-ADAM10 complexes may allow cell type- and/or substrate-specific ADAM10 targeting.
Blood | 2009
Josette-Renee Landry; Nicolas Bonadies; Sarah Kinston; Kathy Knezevic; Nicola K. Wilson; S. Helen Oram; Mary E. Janes; Sandie Piltz; Michelle Hammett; Jacinta Carter; Tina L. Hamilton; Ian J. Donaldson; Georges Lacaud; Jonathan Frampton; George A. Follows; Valerie Kouskoff; Berthold Göttgens
The Lmo2 gene encodes a transcriptional cofactor critical for the development of hematopoietic stem cells. Ectopic LMO2 expression causes leukemia in T-cell acute lymphoblastic leukemia (T-ALL) patients and severe combined immunodeficiency patients undergoing retroviral gene therapy. Tightly controlled Lmo2 expression is therefore essential, yet no comprehensive analysis of Lmo2 regulation has been published so far. By comparative genomics, we identified 17 highly conserved noncoding elements, 9 of which revealed specific acetylation marks in chromatin-immunoprecipitation and microarray (ChIP-chip) assays performed across 250 kb of the Lmo2 locus in 11 cell types covering different stages of hematopoietic differentiation. All candidate regulatory regions were tested in transgenic mice. An extended LMO2 proximal promoter fragment displayed strong endothelial activity, while the distal promoter showed weak forebrain activity. Eight of the 15 distal candidate elements functioned as enhancers, which together recapitulated the full expression pattern of Lmo2, directing expression to endothelium, hematopoietic cells, tail, and forebrain. Interestingly, distinct combinations of specific distal regulatory elements were required to extend endothelial activity of the LMO2 promoter to yolk sac or fetal liver hematopoietic cells. Finally, Sfpi1/Pu.1, Fli1, Gata2, Tal1/Scl, and Lmo2 were shown to bind to and transactivate Lmo2 hematopoietic enhancers, thus identifying key upstream regulators and positioning Lmo2 within hematopoietic regulatory networks.
Blood | 2015
Osama Alshehri; Craig E. Hughes; Samantha J. Montague; Stephanie Watson; Jonathan Frampton; Markus Bender; Steve P. Watson
The glycoprotein VI (GPVI)-Fc receptor γ (FcRγ) chain is the major platelet signaling receptor for collagen. Paradoxically, in a FeCl3 injury model, occlusion, but not initiation of thrombus formation, is delayed in GPVI-deficient and GPVI-depleted mice. In this study, we demonstrate that GPVI is a receptor for fibrin and speculate that this contributes to development of an occlusive thrombus. We observed a marked increase in tyrosine phosphorylation, including the FcRγ chain and Syk, in human and mouse platelets induced by thrombin in the presence of fibrinogen and the αIIbβ3 blocker eptifibatide. This was not seen in platelets stimulated by a protease activated receptor (PAR)-4 peptide, which is unable to generate fibrin from fibrinogen. The pattern of tyrosine phosphorylation was similar to that induced by activation of GPVI. Consistent with this, thrombin did not induce tyrosine phosphorylation of Syk and the FcRγ chain in GPVI-deficient mouse platelets. Mouse platelets underwent full spreading on fibrin but not fibrinogen, which was blocked in the presence of a Src kinase inhibitor or in the absence of GPVI. Spreading on fibrin was associated with phosphatidylserine exposure (procoagulant activity), and this too was blocked in GPVI-deficient platelets. The ectodomain of GPVI was shown to bind to immobilized monomeric and polymerized fibrin. A marked increase in embolization was seen following FeCl3 injury in GPVI-deficient mice, likely contributing to the delay in occlusion in this model. These results demonstrate that GPVI is a receptor for fibrin and provide evidence that this interaction contributes to thrombus growth and stability.
Blood | 2008
Katherine L. Tucker; Tanya Sage; Joanne M. Stevens; Peter A. Jordan; Sarah Jones; Natasha E. Barrett; René St-Arnaud; Jonathan Frampton; Shoukat Dedhar; Jonathan M. Gibbins
Integrin-linked kinase (ILK) has been implicated in the regulation of a range of fundamental biological processes such as cell survival, growth, differentiation, and adhesion. In platelets ILK associates with β1- and β3-containing integrins, which are of paramount importance for the function of platelets. Upon stimulation of platelets this association with the integrins is increased and ILK kinase activity is up-regulated, suggesting that ILK may be important for the coordination of platelet responses. In this study a conditional knockout mouse model was developed to examine the role of ILK in platelets. The ILK-deficient mice showed an increased bleeding time and volume, and despite normal ultrastructure the function of ILK-deficient platelets was decreased significantly. This included reduced aggregation, fibrinogen binding, and thrombus formation under arterial flow conditions. Furthermore, although early collagen stimulated signaling such as PLCγ2 phosphorylation and calcium mobilization were unaffected in ILK-deficient platelets, a selective defect in α-granule, but not dense-granule, secretion was observed. These results indicate that as well as involvement in the control of integrin affinity, ILK is required for α-granule secretion and therefore may play a central role in the regulation of platelet function.
Blood | 2008
John E. Pimanda; Wan Y I Chan; Nicola K. Wilson; Aileen M. Smith; Sarah Kinston; Kathy Knezevic; Mary E. Janes; Josette Renée Landry; Anja Kolb-Kokocinski; Jonathan Frampton; David Tannahill; Katrin Ottersbach; George A. Follows; Georges Lacaud; Valerie Kouskoff; Berthold Göttgens
Endoglin is an accessory receptor for TGF-beta signaling and is required for normal hemangioblast, early hematopoietic, and vascular development. We have previously shown that an upstream enhancer, Eng -8, together with the promoter region, mediates robust endothelial expression yet is inactive in blood. To identify hematopoietic regulatory elements, we used array-based methods to determine chromatin accessibility across the entire locus. Subsequent transgenic analysis of candidate elements showed that an endothelial enhancer at Eng +9 when combined with an element at Eng +7 functions as a strong hemato-endothelial enhancer. Chromatin immunoprecipitation (ChIP)-chip analysis demonstrated specific binding of Ets factors to the promoter as well as to the -8, +7+9 enhancers in both blood and endothelial cells. By contrast Pu.1, an Ets factor specific to the blood lineage, and Gata2 binding was only detected in blood. Gata2 was bound only at +7 and GATA motifs were required for hematopoietic activity. This modular assembly of regulators gives blood and endothelial cells the regulatory freedom to independently fine-tune gene expression and emphasizes the role of regulatory divergence in driving functional divergence.
Oncogene | 2000
Deborah Clarke; Alexandros Vegiopoulos; Anthony Crawford; Michael L. Mucenski; Constanze Bonifer; Jonathan Frampton
Mice homozygous for an inactivated c-myb allele exhibit embryonic (primitive) blood formation but die at about day 15 of gestation because of a failure to generate adult (definitive) haemopoiesis. Recently, it has been shown that commitment to definitive haemopoiesis does occur in vivo, but that some point in the subsequent development towards the differentiated lineages is compromised. Here we have asked whether it is possible to demonstrate this same distinction between the development of primitive and definitive haemopoiesis during the in vitro differentiation of c-myb null ES cells, and whether this can be used to define more precisely at which developmental stage the absence of c-Myb blocks the adult haemopoietic lineages. We investigated the kinetics of progenitor formation and commitment to differentiation using a combination of colony forming assays and analysis of RNA and surface antigen expression. Primitive unilineage macrophage and erythroid precursor commitment could develop in the absence of c-Myb. No precursors characteristic of definitive haemopoiesis were detected; nevertheless, we could show the expression of a programme of transcription and surface antigens which is consistent with the appearance of definitive progenitors blocked at an early multipotential stage.
Oncogene | 2000
Paloma García; Jonathan Frampton; Alicia Ballester; Carmela Calés
Megakaryocytes become polyploid by entering a truncated cell cycle, consisting of alternate S phases and abortive mitoses. We have investigated the regulation of the G1/S transition by comparing two megakaryoblastic cell lines, HEL and K562, which respectively do or do not become polyploid in response to phorbol esters. A pronounced downregulation of cyclin A, and to a lesser extent of cyclin E, occurred in K562 cells during the first 24 h after TPA treatment, in contrast with re-replicating HEL cells, in which both cyclins were present in individual G2/M cells. Transactivation experiments suggested that the absence of cyclin A in differentiated K562 cells could be due to a TPA-mediated inhibition of its transcription. To investigate the potential role of cyclin E in the establishment of re-replication cycles, we isolated K562 clones constitutively expressing cyclin E. The resulting clones, and also K562 cells transiently expressing cyclin E, entered re-replication cycles when treated with TPA. The transcriptional activity of the cyclin A promoter was not inhibited after TPA treatment, and although the levels of cyclin A fluctuated during further re-replication cycles, they never decreased below S phase levels. We conclude that the presence of cyclin E in megakaryoblastic G2/M cells determines cyclin A expression and allows the entrance into an extra S phase.
Blood | 2015
Kate L. Lowe; Brenda A. Finney; Carsten Deppermann; René Hägerling; Salomé L Gazit; Jonathan Frampton; Christopher D. Buckley; Eric Camerer; Bernhard Nieswandt; Friedemann Kiefer; Steve P. Watson
Mice with a constitutive or platelet-specific deletion of the C-type-lectin-like receptor (CLEC-2) exhibit hemorrhaging in the brain at mid-gestation. We sought to investigate the basis of this defect, hypothesizing that it is mediated by the loss of CLEC-2 activation by its endogenous ligand, podoplanin, which is expressed on the developing neural tube. To induce deletion of podoplanin at the 2-cell stage, we generated a podoplanin(fl/fl) mouse crossed to a PGK-Cre mouse. Using 3-dimensional light-sheet microscopy, we observed cerebral vessels were tortuous and aberrantly patterned at embryonic (E) day 10.5 in podoplanin- and CLEC-2-deficient mice, preceding the formation of large hemorrhages throughout the fore-, mid-, and hindbrain by E11.5. Immunofluorescence and electron microscopy revealed defective pericyte recruitment and misconnections between the endothelium of developing blood vessels and surrounding pericytes and neuro-epithelial cells. Nestin-Cre-driven deletion of podoplanin on neural progenitors also caused widespread cerebral hemorrhaging. Hemorrhaging was also seen in the ventricles of embryos deficient in the platelet integrin subunit glycoprotein IIb or in embryos in which platelet α-granule and dense granule secretion is abolished. We propose a novel role for podoplanin on the neuro-epithelium, which interacts with CLEC-2 on platelets, mediating platelet adhesion, aggregation, and secretion to guide the maturation and integrity of the developing vasculature and prevent hemorrhage.