Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nikole K. Lewis is active.

Publication


Featured researches published by Nikole K. Lewis.


The Astrophysical Journal | 2011

DISEQUILIBRIUM CARBON, OXYGEN, AND NITROGEN CHEMISTRY IN THE ATMOSPHERES OF HD 189733b AND HD 209458b

Julianne I. Moses; Christian De Visscher; Jonathan J. Fortney; Nikole K. Lewis; Caitlin Ann Griffith; S. J. Klippenstein; Megan Shabram; Andrew James Friedson; Mark S. Marley; Richard S. Freedman

We have developed a one-dimensional photochemical and thermochemical kinetics and diffusion model to study the effects of disequilibrium chemistry on the atmospheric composition of “hot-Jupiter” exoplanets. Here we investigate the coupled chemistry of neutral carbon, hydrogen, oxygen, and nitrogen species on HD 189733b and HD 209458b and we compare the model results with existing transit and eclipse observations. We find that the vertical profiles of molecular constituents are significantly affected by transport-induced quenching and photochemistry, particularly on the cooler HD 189733b; however, the warmer stratospheric temperatures on HD 209458b help maintain thermochemical equilibrium and reduce the effects of disequilibrium chemistry. For both planets, the methane and ammonia mole fractions are found to be enhanced over their equilibrium values at pressures of a few bar to less than an mbar due to transport-induced quenching, but CH4 and NH3 are photochemically removed at higher altitudes. Disequilibrium chemistry also enhances atomic species, unsaturated hydrocarbons (particularly C2H2), some nitriles (particularly HCN), and radicals like OH, CH3, and NH2. In contrast, CO, H2O, N2, and CO2 more closely follow their equilibrium profiles, except at pressures 1 μbar, where CO, H2O, and N2 are photochemically destroyed and CO2 is produced before its eventual high-altitude destruction. The enhanced abundances of CH4, NH3, and HCN are expected to affect the spectral signatures and thermal profiles of HD 189733b and other relatively cool, transiting exoplanets. We examine the sensitivity of our results to the assumed temperature structure and eddy diffusion coefficients and discuss further observational consequences of these models.


The Astrophysical Journal | 2010

Transmission Spectra of Three-Dimensional Hot Jupiter Model Atmospheres

Jonathan J. Fortney; M. Shabram; Yuan Lian; Richard S. Freedman; Mark S. Marley; Nikole K. Lewis

We compute models of the transmission spectra of planets HD 209458b, HD 189733b, and generic hot Jupiters. We examine the effects of temperature, surface gravity, and metallicity for the generic planets as a guide to understanding transmission spectra in general. We find that carbon dioxide absorption at 4.4 and 15 μm is prominent at high metallicity, and is a clear metallicity indicator. For HD 209458b and HD 189733b, we compute spectra for both one-dimensional and three-dimensional model atmospheres and examine the differences between them. The differences are usually small, but can be large if atmospheric temperatures are near important chemical abundance boundaries. The calculations for the three-dimensional atmospheres, and their comparison with data, serve as constraints on these dynamical models that complement the secondary eclipse and light curve data sets. For HD 209458b, even if TiO and VO gases are abundant on the dayside, their abundances can be considerably reduced on the cooler planetary limb. However, given the predicted limb temperatures and TiO abundances, the models optical opacity is too high. For HD 189733b we find a good match with some infrared data sets and constrain the altitude of a postulated haze layer. For this planet, substantial differences can exist between the transmission spectra of the leading and trailing hemispheres, which are an excellent probe of carbon chemistry. In thermochemical equilibrium, the cooler leading hemisphere is methane-dominated, and the hotter trailing hemisphere is CO-dominated, but these differences may be eliminated by non-equilibrium chemistry due to vertical mixing. It may be possible to constrain the carbon chemistry of this planet, and its spatial variation, with James Webb Space Telescope.


The Astrophysical Journal | 2012

3.6 AND 4.5 μm PHASE CURVES AND EVIDENCE FOR NON-EQUILIBRIUM CHEMISTRY IN THE ATMOSPHERE OF EXTRASOLAR PLANET HD 189733b

Heather A. Knutson; Nikole K. Lewis; Jonathan J. Fortney; Adam Burrows; Nicolas B. Cowan; Eric Agol; S. Aigrain; David Charbonneau; Drake Deming; J.-M. Desert; Gregory W. Henry; Jonathan Langton; Gregory Laughlin

We present new, full-orbit observations of the infrared phase variations of the canonical hot Jupiter HD 189733b obtained in the 3.6 and 4.5 μm bands using the Spitzer Space Telescope. When combined with previous phase curve observations at 8.0 and 24 μm, these data allow us to characterize the exoplanets emission spectrum as a function of planetary longitude and to search for local variations in its vertical thermal profile and atmospheric composition. We utilize an improved method for removing the effects of intrapixel sensitivity variations and robustly extracting phase curve signals from these data, and we calculate our best-fit parameters and uncertainties using a wavelet-based Markov Chain Monte Carlo analysis that accounts for the presence of time-correlated noise in our data. We measure a phase curve amplitude of 0.1242% ± 0.0061% in the 3.6 μm band and 0.0982% ± 0.0089% in the 4.5 μm band, corresponding to brightness temperature contrasts of 503 ± 21 K and 264 ± 24 K, respectively. We find that the times of minimum and maximum flux occur several hours earlier than predicted for an atmosphere in radiative equilibrium, consistent with the eastward advection of gas by an equatorial super-rotating jet. The locations of the flux minima in our new data differ from our previous observations at 8 μm, and we present new evidence indicating that the flux minimum observed in the 8 μm is likely caused by an overshooting effect in the 8 μm array. We obtain improved estimates for HD 189733bs dayside planet-star flux ratio of 0.1466% ± 0.0040% in the 3.6 μm band and 0.1787% ± 0.0038% in the 4.5 μm band, corresponding to brightness temperatures of 1328 ± 11 K and 1192 ± 9 K, respectively; these are the most accurate secondary eclipse depths obtained to date for an extrasolar planet. We compare our new dayside and nightside spectra for HD 189733b to the predictions of one-dimensional radiative transfer models from Burrows et al. and conclude that fits to this planets dayside spectrum provide a reasonably accurate estimate of the amount of energy transported to the night side. Our 3.6 and 4.5 μm phase curves are generally in good agreement with the predictions of general circulation models for this planet from Showman et al., although we require either excess drag or slower rotation rates in order to match the locations of the measured maxima and minima in the 4.5, 8.0, and 24 μm bands. We find that HD 189733bs 4.5 μm nightside flux is 3.3σ smaller than predicted by these models, which assume that the chemistry is in local thermal equilibrium. We conclude that this discrepancy is best explained by vertical mixing, which should lead to an excess of CO and correspondingly enhanced 4.5 μm absorption in this region. This result is consistent with our constraints on the planets transmission spectrum, which also suggest excess absorption in the 4.5 μm band at the day-night terminator.


The Astrophysical Journal | 2010

ATMOSPHERIC CIRCULATION OF ECCENTRIC HOT NEPTUNE GJ436b

Nikole K. Lewis; Jonathan J. Fortney; Mark S. Marley; Richard S. Freedman; Katharina Lodders

GJ436b is a unique member of the transiting extrasolar planet population being one of the smallest and least irradiated and possessing an eccentric orbit. Because of its size, mass, and density, GJ436b could plausibly have an atmospheric metallicity similar to Neptune (20-60 times solar abundances), which makes it an ideal target to study the effects of atmospheric metallicity on dynamics and radiative transfer in an extrasolar planetary atmosphere. We present three-dimensional atmospheric circulation models that include realistic non-gray radiative transfer for 1, 3, 10, 30, and 50 times solar atmospheric metallicity cases of GJ436b. Low metallicity models (1 and 3 times solar) show little day/night temperature variation and strong high-latitude jets. In contrast, higher metallicity models (30 and 50 times solar) exhibit day/night temperature variations and a strong equatorial jet. Spectra and light curves produced from these simulations show strong orbital phase dependencies in the 50 times solar case and negligible variations with orbital phase in the 1 times solar case. Comparisons between the predicted planet/star flux ratio from these models and current secondary eclipse measurements support a high metallicity atmosphere (30-50 times solar abundances) with disequilibrium carbon chemistry at play for GJ436b. Regardless of the actual atmospheric composition of GJ436b, our models serve to illuminate how metallicity influences the atmospheric circulation for a broad range of warm extrasolar planets.


The Astrophysical Journal | 2013

ORBITAL PHASE VARIATIONS OF THE ECCENTRIC GIANT PLANET HAT-P-2b

Nikole K. Lewis; Heather A. Knutson; Nicolas B. Cowan; Gregory Laughlin; Adam Burrows; Drake Deming; Justin R. Crepp; Kenneth J. Mighell; Eric Agol; G. Á. Bakos; David Charbonneau; J.-M. Desert; Debra A. Fischer; Jonathan J. Fortney; J. D. Hartman; Sasha Hinkley; Andrew W. Howard; John Asher Johnson; Melodie Kao; Jonathan Langton; Geoffrey W. Marcy

We present the first secondary eclipse and phase curve observations for the highly eccentric hot Jupiter HAT-P-2b in the 3.6, 4.5, 5.8, and 8.0 μm bands of the Spitzer Space Telescope. The 3.6 and 4.5 μm data sets span an entire orbital period of HAT-P-2b (P = 5.6334729 d), making them the longest continuous phase curve observations obtained to date and the first full-orbit observations of a planet with an eccentricity exceeding 0.2. We present an improved non-parametric method for removing the intrapixel sensitivity variations in Spitzer data at 3.6 and 4.5 μm that robustly maps position-dependent flux variations. We find that the peak in planetary flux occurs at 4.39 ± 0.28, 5.84 ± 0.39, and 4.68 ± 0.37 hr after periapse passage with corresponding maxima in the planet/star flux ratio of 0.1138% ± 0.0089%, 0.1162% ± 0.0080%, and 0.1888% ± 0.0072% in the 3.6, 4.5, and 8.0 μm bands, respectively. Our measured secondary eclipse depths of 0.0996% ± 0.0072%, 0.1031% ± 0.0061%, 0.071%^(+0.029%)_(-0.013%), and 0.1392% ± 0.0095% in the 3.6, 4.5, 5.8, and 8.0 μm bands, respectively, indicate that the planet cools significantly from its peak temperature before we measure the dayside flux during secondary eclipse. We compare our measured secondary eclipse depths to the predictions from a one-dimensional radiative transfer model, which suggests the possible presence of a transient day side inversion in HAT-P-2bs atmosphere near periapse. We also derive improved estimates for the system parameters, including its mass, radius, and orbital ephemeris. Our simultaneous fit to the transit, secondary eclipse, and radial velocity data allows us to determine the eccentricity (e = 0.50910 ± 0.00048) and argument of periapse (ω = 188°.09 ± 0°.39) of HAT-P-2bs orbit with a greater precision than has been achieved for any other eccentric extrasolar planet. We also find evidence for a long-term linear trend in the radial velocity data. This trend suggests the presence of another substellar companion in the HAT-P-2 system, which could have caused HAT-P-2b to migrate inward to its present-day orbit via the Kozai mechanism.


The Astrophysical Journal | 2013

Inference of Inhomogeneous Clouds in an Exoplanet Atmosphere

Brice-Olivier Demory; Julien de Wit; Nikole K. Lewis; Jonathan J. Fortney; Andras Zsom; Sara Seager; Heather A. Knutson; Kevin Heng; Nikku Madhusudhan; Michaël Gillon; J.-M. Desert; Vivien Parmentier; Nicolas B. Cowan

We present new visible and infrared observations of the hot Jupiter Kepler-7b to determine its atmospheric properties. Our analysis allows us to (1) refine Kepler-7bs relatively large geometric albedo of Ag = 0.35 ± 0.02, (2) place upper limits on Kepler-7b thermal emission that remains undetected in both Spitzer bandpasses and (3) report a westward shift in the Kepler optical phase curve. We argue that Kepler-7bs visible flux cannot be due to thermal emission or Rayleigh scattering from H2 molecules. We therefore conclude that high altitude, optically reflective clouds located west from the substellar point are present in its atmosphere. We find that a silicate-based cloud composition is a possible candidate. Kepler-7b exhibits several properties that may make it particularly amenable to cloud formation in its upper atmosphere. These include a hot deep atmosphere that avoids a cloud cold trap, very low surface gravity to suppress cloud sedimentation, and a planetary equilibrium temperature in a range that allows for silicate clouds to potentially form in the visible atmosphere probed by Kepler. Our analysis does not only present evidence of optically thick clouds on Kepler-7b but also yields the first map of clouds in an exoplanet atmosphere.


The Astrophysical Journal | 2012

VERTICAL ATMOSPHERIC STRUCTURE IN A VARIABLE BROWN DWARF: PRESSURE-DEPENDENT PHASE SHIFTS IN SIMULTANEOUS HUBBLE SPACE TELESCOPE-SPITZER LIGHT CURVES

Esther Buenzli; Daniel Apai; Caroline V. Morley; Davin Flateau; Adam Burrows; Mark S. Marley; Nikole K. Lewis; I. Neill Reid

Heterogeneous clouds or temperature perturbations in rotating brown dwarfs produce variability in the observed flux. We report time-resolved simultaneous observations of the variable T6.5 brown dwarf 2MASSJ22282889 431026 over the wavelength ranges 1.1 1.7 µm and broadband 4.5 µm. Spectroscopic observations were taken with Wide Field Camera 3 on board the Hubble Space Telescope and photometry with the Spitzer Space Telescope. The object shows sinusoidal infrared variability with a period of 1.4 hr at most wavelengths with peak-to-peak amplitudes between 1.45% and 5.3% of the mean flux. While the light curve shapes are similar at all wavelengths, their phases differ from wavelength to wavelength with a maximum difference of more than half of a rotational period. We compare the spectra with atmospheric models of different cloud prescriptions, from which we determine the pressure levels probed at different wavelengths. We find that the phase lag increases with decreasing pressure level, or higher altitude. We discuss a number of plausible scenarios that could cause this trend of light curve phase with probed pressure level. These observations are the first to probe heterogeneity in an ultracool atmosphere in both horizontal and vertical directions, and thus are an ideal test case for realistic three dimensional simulations of the atmospheric structure with clouds in brown dwarfs and extrasolar planets. Subject headings: brown dwarfs — stars: atmospheres — stars: individual (2MASSJ22282889 4310262) — stars: variables: general


The Astrophysical Journal | 2011

WARM SPITZER PHOTOMETRY OF THE TRANSITING EXOPLANETS COROT-1 AND COROT-2 AT SECONDARY ECLIPSE

Drake Deming; Heather A. Knutson; Eric Agol; J.-M. Desert; Adam Burrows; Jonathan J. Fortney; David Charbonneau; Nicolas B. Cowan; Gregory Laughlin; Jonathan Langton; Nikole K. Lewis

We measure secondary eclipses of the hot giant exoplanets CoRoT-1 at 3.6 and 4.5 μm, and CoRoT-2 at 3.6 μm, both using Warm Spitzer. We find that the Warm Spitzer mission is working very well for exoplanet science. For consistency of our analysis we also re-analyze archival cryogenic Spitzer data for secondary eclipses of CoRoT-2 at 4.5 and 8 μm. We compare the total data for both planets, including optical eclipse measurements by the CoRoT mission, and ground-based eclipse measurements at 2 μm, to existing models. Both planets exhibit stronger eclipses at 4.5 than at 3.6 μm, which is often indicative of an atmospheric temperature inversion. The spectrum of CoRoT-1 is best reproduced by a 2460 K blackbody, due either to a high altitude layer that strongly absorbs stellar irradiance, or an isothermal region in the planetary atmosphere. The spectrum of CoRoT-2 is unusual because the 8 μm contrast is anomalously low. Non-inverted atmospheres could potentially produce the CoRoT-2 spectrum if the planet exhibits line emission from CO at 4.5 μm, caused by tidal-induced mass loss. However, the viability of that hypothesis is questionable because the emitting region cannot be more than about 30% larger than the planets transit radius, based on the ingress and egress times at eclipse. An alternative possibility to account for the spectrum of CoRoT-2 is an additional opacity source that acts strongly at wavelengths less than 5 μm, heating the upper atmosphere while allowing the deeper atmosphere seen at 8 μm to remain cooler. We obtain a similar result as Gillon et al. for the phase of the secondary eclipse of CoRoT-2, implying an eccentric orbit with e cos(ω) = –0.0030 ± 0.0004.


The Astrophysical Journal | 2010

Characterizing the Thermosphere of HD209458b with UV Transit Observations

T. T. Koskinen; Roger V. Yelle; P. Lavvas; Nikole K. Lewis

Transmission spectroscopy at UV wavelengths is a rich and largely unexplored source of information about the upper atmospheres of extrasolar planets. So far, UV transit observations have led to the detection of atomic hydrogen, oxygen, and ionized carbon in the upper atmosphere of HD209458b. The interpretation of these observations is controversial—it is not clear if the absorption arises from an escaping atmosphere interacting with the stellar radiation and stellar wind, or from the thermosphere inside the Roche lobe. In this paper, we introduce an empirical model that can be used to analyze UV transit depths of extrasolar planets. We use this model to interpret the transits of HD209458b in the H I 1216 and the O I 1304 triplet emission lines. The results indicate that the mean temperature of the thermosphere is T = 8000-11,000 K and that the H2/H dissociation front is located at pressures between p = 0.1 and 1 μbar, which correspond to a distance r 1.1 Rp from the center of the planet. The upper boundary of the model thermosphere is located at r = 2.7-3 Rp , above which the atmosphere is mostly ionized. We find that the H I transit depth in the wings of the H Lyα line reflects the optical depth of the thermosphere, but that the atmosphere also overflows the Roche lobe. By assuming a solar mixing ratio of oxygen, we obtain an O I transit depth that is statistically consistent with the observations. An O I transit depth comparable to the H I transit depth is possible if the atmosphere is undergoing fast hydrodynamic escape, the O/H ratio is supersolar, or if a significant quantity of neutral oxygen is found outside the Roche lobe. We find that the observations can be explained solely by absorption in the upper atmosphere and extended clouds of energetic neutral atoms or atoms strongly perturbed by radiation pressure are not required. Due to the large uncertainty in the data, repeated observations are necessary to better constrain the O I transit depths and thus the composition of the thermosphere.


The Astrophysical Journal | 2013

DOPPLER SIGNATURES OF THE ATMOSPHERIC CIRCULATION ON HOT JUPITERS

Jonathan J. Fortney; Nikole K. Lewis; Megan Shabram

The meteorology of hot Jupiters has been characterized primarily with thermal measurements, but recent observations suggest the possibility of directly detecting the winds by observing the Doppler shift of spectral lines seen during transit. Motivated by these observations, we show how Doppler measurements can place powerful constraints on the meteorology. We show that the atmospheric circulation?and Doppler signature?of hot Jupiters splits into two regimes. Under weak stellar insolation, the day-night thermal forcing generates fast zonal jet streams from the interaction of atmospheric waves with the mean flow. In this regime, air along the terminator (as seen during transit) flows toward Earth in some regions and away from Earth in others, leading to a Doppler signature exhibiting superposed blueshifted and redshifted components. Under intense stellar insolation, however, the strong thermal forcing damps these planetary-scale waves, inhibiting their ability to generate jets. Strong frictional drag likewise damps these waves and inhibits jet formation. As a result, this second regime exhibits a circulation dominated by high-altitude, day-to-night airflow, leading to a predominantly blueshifted Doppler signature during transit. We present state-of-the-art circulation models including non-gray radiative transfer to quantify this regime shift and the resulting Doppler signatures; these models suggest that cool planets like GJ?436b lie in the first regime, HD?189733b is transitional, while planets hotter than HD?209458b lie in the second regime. Moreover, we show how the amplitude of the Doppler shifts constrains the strength of frictional drag in the upper atmospheres of hot Jupiters. If due to winds, the ~2 km s?1 blueshift inferred on HD?209458b may require drag time constants as short as 104-106?s, possibly the result of Lorentz-force braking on this planets hot dayside.

Collaboration


Dive into the Nikole K. Lewis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heather A. Knutson

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Agol

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hannah R. Wakeford

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

J.-M. Desert

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge