Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan J. Nassi is active.

Publication


Featured researches published by Jonathan J. Nassi.


Nature Reviews Neuroscience | 2009

Parallel Processing Strategies of the Primate Visual System

Jonathan J. Nassi; Edward M. Callaway

Incoming sensory information is sent to the brain along modality-specific channels corresponding to the five senses. Each of these channels further parses the incoming signals into parallel streams to provide a compact, efficient input to the brain. Ultimately, these parallel input signals must be elaborated on and integrated in the cortex to provide a unified and coherent percept. Recent studies in the primate visual cortex have greatly contributed to our understanding of how this goal is accomplished. Multiple strategies including retinal tiling, hierarchical and parallel processing and modularity, defined spatially and by cell type-specific connectivity, are used by the visual system to recover the intricate detail of our visual surroundings.


Neuron | 2010

A Disynaptic Relay from Superior Colliculus to Dorsal Stream Visual Cortex in Macaque Monkey

David C. Lyon; Jonathan J. Nassi; Edward M. Callaway

The superior colliculus (SC) is the first station in a subcortical relay of retinal information to extrastriate visual cortex. Ascending SC projections pass through pulvinar and LGN on their way to cortex, but it is not clear how many synapses are required to complete these circuits or which cortical areas are involved. To examine this relay directly, we injected transynaptic rabies virus into several extrastriate visual areas. We observed disynaptically labeled cells in superficial, retino-recipient SC layers from injections in dorsal stream areas MT and V3, but not the earliest extrastriate area, V2, nor ventral stream area V4. This robust SC-dorsal stream pathway is most likely relayed through the inferior pulvinar and can provide magnocellular-like sensory inputs necessary for motion perception and the computation of orienting movements. Furthermore, by circumventing primary visual cortex, this pathway may also underlie the remaining visual capacities associated with blindsight.


Neuron | 2006

The parvocellular LGN provides a robust disynaptic input to the visual motion area MT

Jonathan J. Nassi; David C. Lyon; Edward M. Callaway

Dorsal visual cortical areas are thought to be dominated by input from the magnocellular (M) visual pathway, with little or no parvocellular (P) contribution. These relationships are supported by a close correlation between the functional properties of these areas and the M pathway and by a lack of anatomical evidence for P input. Here we use rabies virus as a retrograde transynaptic tracer to show that the dorsal area MT receives strong input, via a single relay, from both M and P cells of the lateral geniculate nucleus. This surprising P input, likely relayed via layer 6 Meynert cells in primary visual cortex, can provide MT with sensitivity to a more complete range of spatial, temporal, and chromatic cues than the M pathway alone. These observations provide definitive evidence for P pathway input to MT and show that convergence of parallel visual pathways occurs in the dorsal stream.


The Journal of Neuroscience | 2006

Multiple Circuits Relaying Primate Parallel Visual Pathways to the Middle Temporal Area

Jonathan J. Nassi; Edward M. Callaway

Parallel pathways in the primate visual system parse the sensory signal into magnocellular (M), parvocellular (P), and koniocellular (K) streams. These pathways remain anatomically separate and distinct from their origination in different retinal ganglion cell types, through distinct layers of the lateral geniculate nucleus, and into primary visual cortex (V1), with the M pathway terminating primarily in layer 4Cα, the P pathway in layer 4Cβ, and the K pathway in the cytochrome oxidase blobs of layer 2/3. Recent studies indicate that outputs from V1 are less compartmental than previously thought, making it difficult to assess the contributions of M and P pathways to areas beyond V1 in the dorsal and ventral streams. Here we use rabies virus as a retrograde transsynaptic tracer to study the contributions of M and P pathways to areas middle temporal (MT), V3, and V2 of macaque monkey. We find that, although disynaptic inputs through layer 4C of V1 to dorsal stream area MT are dominated by the M pathway, within an additional three synapses MT receives a substantial P input. This P input is unlikely to reach MT via V3, which we show also receives disynaptic inputs dominated by the M pathway. We find that disynaptic inputs to V2, however, can be more balanced and may carry convergent M and P input to MT. Our observations provide evidence for multiple pathways from V1 to MT, with varying degrees of M and P convergence. Each pathway likely provides functionally specialized information to MT and dorsal stream visual processing.


The Journal of Neuroscience | 2013

Corticocortical Feedback Contributes to Surround Suppression in V1 of the Alert Primate

Jonathan J. Nassi; Stephen G. Lomber; Richard T. Born

Feedback connections are prevalent throughout the cerebral cortex, yet their function remains poorly understood. Previous studies in anesthetized monkeys found that inactivating feedback from extrastriate visual cortex produced effects in striate cortex that were relatively weak, generally suppressive, largest for visual stimuli confined to the receptive field center, and detectable only at low stimulus contrast. We studied the influence of corticocortical feedback in alert monkeys using cortical cooling to reversibly inactivate visual areas 2 (V2) and 3 (V3) while characterizing receptive field properties in primary visual cortex (V1). We show that inactivation of feedback from areas V2 and V3 results in both response suppression and facilitation for stimuli restricted to the receptive field center, in most cases leading to a small reduction in the degree of orientation selectivity but no change in orientation preference. For larger-diameter stimuli that engage regions beyond the center of the receptive field, eliminating feedback from V2 and V3 results in strong and consistent response facilitation, effectively reducing the strength of surround suppression in V1 for stimuli of both low and high contrast. For extended contours, eliminating feedback had the effect of reducing end stopping. Inactivation effects were largest for neurons that exhibited strong surround suppression before inactivation, and their timing matched the dynamics of surround suppression under control conditions. Our results provide direct evidence that feedback contributes to surround suppression, which is an important source of contextual influences essential to vision.


Journal of Neurophysiology | 2013

Optogenetics through windows on the brain in the nonhuman primate

Octavio Ruiz; Brian R. Lustig; Jonathan J. Nassi; Ali H. Cetin; John H. Reynolds; Thomas D. Albright; Edward M. Callaway; Gene R. Stoner; Anna W. Roe

Optogenetics combines optics and genetics to control neuronal activity with cell-type specificity and millisecond temporal precision. Its use in model organisms such as rodents, Drosophila, and Caenorhabditis elegans is now well-established. However, application of this technology in nonhuman primates (NHPs) has been slow to develop. One key challenge has been the delivery of viruses and light to the brain through the thick dura mater of NHPs, which can only be penetrated with large-diameter devices that damage the brain. The opacity of the NHP dura prevents visualization of the underlying cortex, limiting the spatial precision of virus injections, electrophysiological recordings, and photostimulation. Here, we describe a new optogenetics approach in which the native dura is replaced with an optically transparent artificial dura. This artificial dura can be penetrated with fine glass micropipettes, enabling precisely targeted injections of virus into brain tissue with minimal damage to cortex. The expression of optogenetic agents can be monitored visually over time. Most critically, this optical window permits targeted, noninvasive photostimulation and concomitant measurements of neuronal activity via intrinsic signal imaging and electrophysiological recordings. We present results from both anesthetized-paralyzed (optical imaging) and awake-behaving NHPs (electrophysiology). The improvements over current methods made possible by the artificial dura should enable the widespread use of optogenetic tools in NHP research, a key step toward the development of therapies for neuropsychiatric and neurological diseases in humans.


Frontiers in Neuroanatomy | 2015

Neuroanatomy goes viral

Jonathan J. Nassi; Constance L. Cepko; Richard T. Born; Kevin T. Beier

The nervous system is complex not simply because of the enormous number of neurons it contains but by virtue of the specificity with which they are connected. Unraveling this specificity is the task of neuroanatomy. In this endeavor, neuroanatomists have traditionally exploited an impressive array of tools ranging from the Golgi method to electron microscopy. An ideal method for studying anatomy would label neurons that are interconnected, and, in addition, allow expression of foreign genes in these neurons. Fortuitously, nature has already partially developed such a method in the form of neurotropic viruses, which have evolved to deliver their genetic material between synaptically connected neurons while largely eluding glia and the immune system. While these characteristics make some of these viruses a threat to human health, simple modifications allow them to be used in controlled experimental settings, thus enabling neuroanatomists to trace multi-synaptic connections within and across brain regions. Wild-type neurotropic viruses, such as rabies and alpha-herpes virus, have already contributed greatly to our understanding of brain connectivity, and modern molecular techniques have enabled the construction of recombinant forms of these and other viruses. These newly engineered reagents are particularly useful, as they can target genetically defined populations of neurons, spread only one synapse to either inputs or outputs, and carry instructions by which the targeted neurons can be made to express exogenous proteins, such as calcium sensors or light-sensitive ion channels, that can be used to study neuronal function. In this review, we address these uniquely powerful features of the viruses already in the neuroanatomist’s toolbox, as well as the aspects of their biology that currently limit their utility. Based on the latter, we consider strategies for improving viral tracing methods by reducing toxicity, improving control of transsynaptic spread, and extending the range of species that can be studied.


Neuron | 2007

Specialized circuits from primary visual cortex to V2 and area MT.

Jonathan J. Nassi; Edward M. Callaway

Primary visual cortex recombines inputs from magnocellular (M) and parvocellular (P) streams to create functionally specialized outputs. Understanding these input-output relationships is complicated by the fact that layer 4B, which provides outputs to dorsal visual areas, contains multiple cell types. Using a modified rabies virus that expresses green fluorescent protein, we show that layer 4B neurons projecting to MT are a majority spiny stellate, whereas those projecting to V2 are overwhelmingly pyramidal. Regardless of cell type, MT-projecting neurons have larger cell bodies, more dendritic length, and are deeper within layer 4B. Furthermore, MT-projecting pyramidal neurons are located preferentially underneath cytochrome oxidase blobs, indicating that MT-projecting neurons of both types restrict their dendrites to M-recipient zones. We conclude that MT-projecting layer 4B neurons are specialized for the fast transmission of information from the M pathway, while V2-projecting neurons are likely to mediate slower computations involving mixed M and P signals.


Neuron | 2015

Optogenetic Activation of Normalization in Alert Macaque Visual Cortex

Jonathan J. Nassi; Michael C. Avery; Ali H. Cetin; Anna W. Roe; John H. Reynolds

Normalization has been proposed as a canonical computation that accounts for a variety of nonlinear neuronal response properties associated with sensory processing and higher cognitive functions. A key premise of normalization is that the excitability of a neuron is inversely proportional to the overall activity level of the network. We tested this by optogenetically activating excitatory neurons in alert macaque primary visual cortex and measuring changes in neuronal activity as a function of stimulation intensity, with or without variable-contrast visual stimulation. Optogenetic depolarization of excitatory neurons either facilitated or suppressed baseline activity, consistent with indirect recruitment of inhibitory networks. As predicted by the normalization model, neurons exhibited sub-additive responses to optogenetic and visual stimulation, which depended lawfully on stimulation intensity and luminance contrast. We conclude that the normalization computation persists even under the artificial conditions of optogenetic stimulation, underscoring the canonical nature of this form of neural computation.


The Journal of Comparative Neurology | 2011

Segregation of feedforward and feedback projections in mouse visual cortex

Vladimir K. Berezovskii; Jonathan J. Nassi; Richard T. Born

Hierarchical organization is a common feature of mammalian neocortex. Neurons that send their axons from lower to higher areas of the hierarchy are referred to as “feedforward” (FF) neurons, whereas those projecting in the opposite direction are called “feedback” (FB) neurons. Anatomical, functional, and theoretical studies suggest that these different classes of projections play fundamentally different roles in perception. In primates, laminar differences in projection patterns often distinguish the two projection streams. In rodents, however, these differences are less clear, despite an established hierarchy of visual areas. Thus the rodent provides a strong test of the hypothesis that FF and FB neurons form distinct populations. We tested this hypothesis by injecting retrograde tracers into two different hierarchical levels of mouse visual cortex (area 17 and anterolateral area [AL]) and then determining the relative proportions of double‐labeled FF and FB neurons in an area intermediate to them (lateromedial area [LM]). Despite finding singly labeled neurons densely intermingled with no laminar segregation, we found few double‐labeled neurons (≈5% of each singly labeled population). We also examined the development of FF and FB connections. FF connections were present at the earliest timepoint we examined (postnatal day 2, P2), while FB connections were not detectable until P11. Our findings indicate that, even in cortices without laminar segregation of FF and FB neurons, the two projection systems are largely distinct at the neuronal level and also differ with respect to the timing of their axonal outgrowth. J. Comp. Neurol. 519:3672–3683, 2011.

Collaboration


Dive into the Jonathan J. Nassi's collaboration.

Top Co-Authors

Avatar

Edward M. Callaway

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

John H. Reynolds

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ali H. Cetin

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anirvan S. Nandy

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

David C. Lyon

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge