Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan Lippy is active.

Publication


Featured researches published by Jonathan Lippy.


Journal of Medicinal Chemistry | 2009

Discovery of N-(4-(2-Amino-3-chloropyridin-4-yloxy)-3-fluorophenyl)-4-ethoxy-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamide (BMS-777607), a Selective and Orally Efficacious Inhibitor of the Met Kinase Superfamily

Gretchen M. Schroeder; Yongmi An; Zhen-Wei Cai; Xiao-Tao Chen; Cheryl M. Clark; Lyndon A. M. Cornelius; Jun Dai; Johnni Gullo-Brown; Ashok Kumar Gupta; Benjamin Henley; John T. Hunt; Robert Jeyaseelan; Amrita Kamath; Kyoung S. Kim; Jonathan Lippy; Louis J. Lombardo; Veeraswamy Manne; Simone Oppenheimer; John S. Sack; Robert J. Schmidt; Guoxiang Shen; Kevin Stefanski; John S. Tokarski; George L. Trainor; Barri Wautlet; Donna D. Wei; David K. Williams; Yingru Zhang; Yueping Zhang; Joseph Fargnoli

Substituted N-(4-(2-aminopyridin-4-yloxy)-3-fluoro-phenyl)-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamides were identified as potent and selective Met kinase inhibitors. Substitution of the pyridine 3-position gave improved enzyme potency, while substitution of the pyridone 4-position led to improved aqueous solubility and kinase selectivity. Analogue 10 demonstrated complete tumor stasis in a Met-dependent GTL-16 human gastric carcinoma xenograft model following oral administration. Because of its excellent in vivo efficacy and favorable pharmacokinetic and preclinical safety profiles, 10 has been advanced into phase I clinical trials.


Journal of Medicinal Chemistry | 2008

Discovery of Pyrrolopyridine-Pyridone Based Inhibitors of Met Kinase : Synthesis, X-ray Crystallographic Analysis, and Biological Activities

Kyoung S. Kim; Liping Zhang; Robert J. Schmidt; Zhen-Wei Cai; Donna D. Wei; David K. Williams; Louis J. Lombardo; George L. Trainor; Dianlin Xie; Yaquan Zhang; Yongmi An; John S. Sack; John S. Tokarski; Celia D'Arienzo; Amrita Kamath; Punit Marathe; Yueping Zhang; Jonathan Lippy; Robert Jeyaseelan; Barri Wautlet; Benjamin Henley; Johnni Gullo-Brown; Veeraswamy Manne; John T. Hunt; Joseph Fargnoli; Robert M. Borzilleri

Conformationally constrained 2-pyridone analogue 2 is a potent Met kinase inhibitor with an IC50 value of 1.8 nM. Further SAR of the 2-pyridone based inhibitors of Met kinase led to potent 4-pyridone and pyridine N-oxide inhibitors such as 3 and 4. The X-ray crystallographic data of the inhibitor 2 bound to the ATP binding site of Met kinase protein provided insight into the binding modes of these inhibitors, and the SAR of this series of analogues was rationalized. Many of these analogues showed potent antiproliferative activities against the Met dependent GTL-16 gastric carcinoma cell line. Compound 2 also inhibited Flt-3 and VEGFR-2 kinases with IC50 values of 4 and 27 nM, respectively. It possesses a favorable pharmacokinetic profile in mice and demonstrates significant in vivo antitumor activity in the GTL-16 human gastric carcinoma xenograft model.


Journal of Medicinal Chemistry | 2011

Trends in Kinase Selectivity: Insights for Target Class-Focused Library Screening

Shana L. Posy; Mark Hermsmeier; Wayne Vaccaro; Karl-Heinz Ott; Gordon Todderud; Jonathan Lippy; George L. Trainor; Deborah A. Loughney; Stephen R. Johnson

A kinome-wide selectivity screen of >20000 compounds with a rich representation of many structural classes has been completed. Analysis of the selectivity patterns for each class shows that a broad spectrum of structural scaffolds can achieve specificity for many kinase families. Kinase selectivity and potency are inversely correlated, a trend that is also found in a large set of kinase functional data. Although selective and nonselective compounds are mostly similar in their physicochemical characteristics, we identify specific features that are present more frequently in compounds that bind to many kinases. Our results support a scaffold-oriented approach for building compound collections to screen kinase targets.


Bioorganic & Medicinal Chemistry Letters | 2009

Design, synthesis and structure-activity relationships of azole acids as novel, potent dual PPAR alpha/gamma agonists.

Hongjian Zhang; Denis E. Ryono; Pratik Devasthale; Wei Wang; K O'Malley; Dennis Farrelly; Liqun Gu; Tom Harrity; Michael Cap; Cuixia Chu; Kenneth T. Locke; Litao Zhang; Jonathan Lippy; Lori Kunselman; Nathan Morgan; Neil Flynn; Lisa Moore; Hosagrahara; Pathanjali Kadiyala; Cen Xu; Arthur M. Doweyko; A Bell; Jodi K. Muckelbauer; Robert Zahler; Narayanan Hariharan; Peter T. W. Cheng

The design, synthesis and structure-activity relationships of a novel series of N-phenyl-substituted pyrrole, 1,2-pyrazole and 1,2,3-triazole acid analogs as PPAR ligands are outlined. The triazole acid analogs 3f and 4f were identified as potent dual PPARalpha/gamma agonists both in binding and functional assays in vitro. The 3-oxybenzyl triazole acetic acid analog 3f showed excellent glucose and triglyceride lowering in diabetic db/db mice.


Bioorganic & Medicinal Chemistry Letters | 2008

Discovery of azetidinone acids as conformationally-constrained dual PPARα/γ agonists

Wei Wang; Pratik Devasthale; Dennis Farrelly; Liqun Gu; Thomas Harrity; Michael Cap; Cuixia Chu; Lori Kunselman; Nathan Morgan; Randy Ponticiello; Rachel Zebo; Litao Zhang; Kenneth T. Locke; Jonathan Lippy; Kevin O’Malley; Vinayak Hosagrahara; Lisa Zhang; Pathanjali Kadiyala; Chiehying Chang; Jodi K. Muckelbauer; Arthur M. Doweyko; Robert Zahler; Denis E. Ryono; Narayanan Hariharan; Peter T. W. Cheng

A novel class of azetidinone acid-derived dual PPARalpha/gamma agonists has been synthesized for the treatment of diabetes and dyslipidemia. The preferred stereochemistry in this series for binding and functional agonist activity against both PPARalpha and PPARgamma receptors was shown to be 3S,4S. Synthesis, in vitro and in vivo activities of compounds in this series are described. A high-yielding method for N-arylation of azetidinone esters is also described.


Bioorganic & Medicinal Chemistry Letters | 2012

Identification of a Phenylacylsulfonamide Series of Dual Bcl-2/Bcl-Xl Antagonists.

Heidi L. Perez; Patrizia Banfi; Jay Aaron Bertrand; Zhen Wei Cai; James W. Grebinski; Kyoung S. Kim; Jonathan Lippy; Michele Modugno; Joseph G. Naglich; Robert J. Schmidt; Andrew J. Tebben; Paola Vianello; Donna D. Wei; Liping Zhang; Arturo Galvani; Louis J. Lombardo; Robert M. Borzilleri

A series of phenylacylsulfonamides has been prepared as antagonists of Bcl-2/Bcl-xL. In addition to potent binding affinities for both Bcl-2 and Bcl-xL, these compounds were shown to induce classical markers of apoptosis in isolated mitochondria. Overall weak cellular potency was improved by the incorporation of polar functionality resulting in compounds with moderate antiproliferative activity.


Bioorganic & Medicinal Chemistry Letters | 2015

Discovery of new acylaminopyridines as GSK-3 inhibitors by a structure guided in-depth exploration of chemical space around a pyrrolopyridinone core.

Prasanna Sivaprakasam; Xiaojun Han; Rita L. Civiello; Swanee Jacutin-Porte; Kevin Kish; Matt Pokross; Hal A. Lewis; Nazia Ahmed; Nicolas Szapiel; John A. Newitt; Eric T. Baldwin; Hong Xiao; Carol M. Krause; Hyunsoo Park; Michelle Nophsker; Jonathan Lippy; Catherine R. Burton; David R. Langley; John E. Macor; Gene M. Dubowchik

Glycogen synthase kinase-3 (GSK-3) has been proposed to play a crucial role in the pathogenesis of many diseases including cancer, stroke, bipolar disorders, diabetes and neurodegenerative diseases. GSK-3 inhibition has been a major area of pharmaceutical interest over the last two decades. A plethora of reports appeared recently on selective inhibitors and their co-crystal structures in GSK-3β. We identified several series of promising new GSK-3β inhibitors from a coherent design around a pyrrolopyridinone core structure. A systematic exploration of the chemical space around the central spacer led to potent single digit and sub-nanomolar GSK-3β inhibitors. When dosed orally in a transgenic mouse model of Alzheimers disease (AD), an exemplary compound showed significant lowering of Tau phosphorylation at one of the GSK-3 phosphorylating sites, Ser396. X-ray crystallography greatly aided in validating the binding hypotheses.


Bioorganic & Medicinal Chemistry Letters | 2015

Design and synthesis of carbazole carboxamides as promising inhibitors of Bruton's tyrosine kinase (BTK) and Janus kinase 2 (JAK2).

Qingjie Liu; Douglas G. Batt; Jonathan Lippy; Neha Surti; Andrew J. Tebben; Jodi K. Muckelbauer; Lin Chen; Yongmi An; Chiehying Chang; Matt Pokross; Zheng Yang; Haiqing Wang; James R. Burke; Percy H. Carter; Joseph A. Tino

Four series of disubstituted carbazole-1-carboxamides were designed and synthesised as inhibitors of Brutons tyrosine kinase (BTK). 4,7- and 4,6-disubstituted carbazole-1-carboxamides were potent and selective inhibitors of BTK, while 3,7- and 3,6-disubstituted carbazole-1-carboxamides were potent and selective inhibitors of Janus kinase 2 (JAK2).


Analytical Biochemistry | 2010

An electrophoretic mobility shift assay for the identification and kinetic analysis of acetyl transferase inhibitors

Caroline Fanslau; Donna L. Pedicord; Sujatha Nagulapalli; Hillary Gray; Suhong Pang; Lata Jayaraman; Jonathan Lippy; Yuval Blat

Histone acetyl transferases are important regulators of cellular homeostasis. This study describes a sensitive acetyl transferase electrophoretic mobility shift assay applicable both for kinetic analysis of acetyl transferase inhibitors and for high-throughput testing. Application of the assay for human GCN5L2 enabled dissection of inhibitor competition with respect to acetyl coenzyme A. Furthermore, we demonstrated that the assay can detect time-dependent inhibition of human GCN5L2 by reactive inhibitors.


Bioorganic & Medicinal Chemistry Letters | 2012

Pyrazole and pyrimidine phenylacylsulfonamides as dual Bcl-2/Bcl-xL antagonists.

Gretchen M. Schroeder; Donna D. Wei; Patrizia Banfi; Zhen-Wei Cai; Jonathan Lippy; Maria Menichincheri; Michele Modugno; Joseph G. Naglich; Becky Penhallow; Heidi L. Perez; John S. Sack; Robert J. Schmidt; Andrew J. Tebben; Chunhong Yan; Liping Zhang; Arturo Galvani; Louis J. Lombardo; Robert M. Borzilleri

5-Butyl-1,4-diphenyl pyrazole and 2-amino-5-chloro pyrimidine acylsulfonamides were developed as potent dual antagonists of Bcl-2 and Bcl-xL. Compounds were optimized for binding to the I88, L92, I95, and F99 pockets normally occupied by pro-apoptotic protein Bim. An X-ray crystal structure confirmed the proposed binding mode. Observation of cytochrome c release from isolated mitochondria in MV-411 cells provides further evidence of target inhibition. Compounds demonstrated submicromolar antiproliferative activity in Bcl-2/Bcl-xL dependent cell lines.

Collaboration


Dive into the Jonathan Lippy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge