Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Litao Zhang is active.

Publication


Featured researches published by Litao Zhang.


Drug Metabolism and Disposition | 2006

Comparative Metabolism of Radiolabeled Muraglitazar in Animals and Humans by Quantitative and Qualitative Metabolite Profiling

Donglu Zhang; Lifei Wang; Nirmala Raghavan; Haiying Zhang; Wenying Li; Peter T. W. Cheng; Ming Yao; Litao Zhang; Mingshe Zhu; Samuel J. Bonacorsi; Suresh Yeola; James Mitroka; Narayanan Hariharan; Vinayak Hosagrahara; Gamini Chandrasena; Wen Chyi Shyu; W. Griffith Humphreys

Muraglitazar (Pargluva), a dual α/γ peroxisome proliferator-activated receptor (PPAR) activator, has both glucose- and lipid-lowering effects in animal models and in patients with diabetes. This study describes the in vivo and in vitro comparative metabolism of [14C]muraglitazar in rats, dogs, monkeys, and humans by quantitative and qualitative metabolite profiling. Metabolite identification and quantification methods used in these studies included liquid chromatography/mass spectrometry (LC/MS), LC/tandem MS, LC/radiodetection, LC/UV, and a newly described mass defect filtering technique in conjunction with high resolution MS. After oral administration of [14C]muraglitazar, absorption was rapid in all species, reaching a concentration peak for parent and total radioactivity in plasma within 1 h. The most abundant component in plasma at all times in all species was the parent drug, and no metabolite was present in greater than 2.5% of the muraglitazar concentrations at 1 h postdose in rats, dogs, and humans. All metabolites observed in human plasma were also present in rats, dogs, or monkeys. Urinary excretion of radioactivity was low (<5% of the dose) in all intact species, and the primary route of elimination was via biliary excretion in rats, monkeys, and humans. Based on recovered doses in urine and bile, muraglitazar showed a very good absorption in rats, monkeys, and humans. The major drug-related components in bile of rats, monkeys, and humans were glucuronides of muraglitazar and its oxidative metabolites. The parent compound was a minor component in bile, suggesting extensive metabolism of the drug. In contrast, the parent drug and oxidative metabolites were the major components in feces, and no glucuronide conjugates were found, suggesting that glucuronide metabolites were excreted in bile and hydrolyzed in the gastrointestinal tract. The metabolites of muraglitazar resulted from both glucuronidation and oxidation. The metabolites in general had greatly reduced activity as PPARα/γ activators relative to muraglitazar. In conclusion, muraglitazar was rapidly absorbed, extensively metabolized through glucuronidation and oxidation, and mainly eliminated in the feces via biliary excretion of glucuronide metabolites in all species studied. Disposition and metabolic pathways were qualitatively similar in rats, dogs, monkeys, and humans.


Journal of Pharmacology and Experimental Therapeutics | 2008

Novel Peroxisome Proliferator-Activated Receptor α Agonists Lower Low-Density Lipoprotein and Triglycerides, Raise High-Density Lipoprotein, and Synergistically Increase Cholesterol Excretion with a Liver X Receptor Agonist

Ranjan Mukherjee; Kenneth T. Locke; Bowman Miao; Daniel Meyers; Hossain Monshizadegan; Rongan Zhang; Debra Search; Denise Grimm; Michael Flynn; Kevin M. O'Malley; Litao Zhang; Jun Li; Yan Shi; Lawrence J. Kennedy; Michael A. Blanar; Peter T. W. Cheng; Joseph A. Tino; Rai Ajit Srivastava

The first generation peroxisome proliferator-activated receptor (PPAR) α agonist gemfibrozil reduces the risk of major cardiovascular events; therefore, more potent PPARα agonists for the treatment of cardiovascular diseases have been actively sought. We describe two novel, potent oxybenzylglycine PPARα-selective agonists, BMS-687453 [N-[[3-[[2-(4-chlorophenyl)-5-methyl-4-oxazolyl]methoxy]phenyl]methyl]-N-(methoxycarbonyl)-glycine] and BMS-711939 N-[[5-[[2-(4-chlorophenyl)-5-methyl-4-oxazolyl]methoxy]-2-fluorophenyl]methyl]-N-(methoxycarbonyl)-glycine], that robustly increase apolipoprotein (Apo) A1 and high-density lipoprotein cholesterol in human ApoA1 transgenic mice and lower low-density lipoprotein-cholesterol and triglycerides in fat-fed hamsters. These compounds have much lower potency against mouse PPARα than human PPARα; therefore, they were tested in PPARα-humanized mice that do not express murine PPARα but express human PPARα selectively in the liver. We developed hepatic gene induction as a novel biomarker for efficacy and demonstrate hepatic gene induction at very low doses of these compounds. BMS-711939 induces fecal cholesterol excretion, which is further increased upon cotreatment with a liver X receptor (LXR) agonist. It is surprising that this synergistic increase upon coadministration is also observed in mice that express PPARα in the liver only. BMS-711939 also prevented the LXR agonist-induced elevation of serum triglycerides. Such PPARα agonists could be attractive candidates to explore for the treatment of cardiovascular diseases, especially in combination with a suitable LXR agonist.


Bioorganic & Medicinal Chemistry Letters | 2009

Design, synthesis and structure-activity relationships of azole acids as novel, potent dual PPAR alpha/gamma agonists.

Hongjian Zhang; Denis E. Ryono; Pratik Devasthale; Wei Wang; K O'Malley; Dennis Farrelly; Liqun Gu; Tom Harrity; Michael Cap; Cuixia Chu; Kenneth T. Locke; Litao Zhang; Jonathan Lippy; Lori Kunselman; Nathan Morgan; Neil Flynn; Lisa Moore; Hosagrahara; Pathanjali Kadiyala; Cen Xu; Arthur M. Doweyko; A Bell; Jodi K. Muckelbauer; Robert Zahler; Narayanan Hariharan; Peter T. W. Cheng

The design, synthesis and structure-activity relationships of a novel series of N-phenyl-substituted pyrrole, 1,2-pyrazole and 1,2,3-triazole acid analogs as PPAR ligands are outlined. The triazole acid analogs 3f and 4f were identified as potent dual PPARalpha/gamma agonists both in binding and functional assays in vitro. The 3-oxybenzyl triazole acetic acid analog 3f showed excellent glucose and triglyceride lowering in diabetic db/db mice.


Journal of Medicinal Chemistry | 2010

Discovery of an oxybenzylglycine based peroxisome proliferator activated receptor alpha selective agonist 2-((3-((2-(4-chlorophenyl)-5-methyloxazol-4-yl)methoxy)benzyl)(methoxycarbonyl)amino)acetic acid (BMS-687453).

Jun Li; Lawrence J. Kennedy; Yan Shi; Shiwei Tao; Xiang-Yang Ye; Stephanie Y. Chen; Ying Wang; Andres S. Hernandez; Wei Wang; Pratik Devasthale; Sean Chen; Zhi Lai; Hao Zhang; Shung Wu; Rebecca A. Smirk; Scott A. Bolton; Denis E. Ryono; Huiping Zhang; Ngiap-Kie Lim; Bang-Chi Chen; Kenneth T. Locke; Kevin O’Malley; Litao Zhang; Rai Ajit Srivastava; Bowman Miao; Daniel Meyers; Hossain Monshizadegan; Debra Search; Denise Grimm; Rongan Zhang

An 1,3-oxybenzylglycine based compound 2 (BMS-687453) was discovered to be a potent and selective peroxisome proliferator activated receptor (PPAR) alpha agonist, with an EC(50) of 10 nM for human PPARalpha and approximately 410-fold selectivity vs human PPARgamma in PPAR-GAL4 transactivation assays. Similar potencies and selectivity were also observed in the full length receptor co-transfection assays. Compound 2 has negligible cross-reactivity against a panel of human nuclear hormone receptors including PPARdelta. Compound 2 demonstrated an excellent pharmacological and safety profile in preclinical studies and thus was chosen as a development candidate for the treatment of atherosclerosis and dyslipidemia. The X-ray cocrystal structures of the early lead compound 12 and compound 2 in complex with PPARalpha ligand binding domain (LBD) were determined. The role of the crystal structure of compound 12 with PPARalpha in the development of the SAR that ultimately resulted in the discovery of compound 2 is discussed.


Bioorganic & Medicinal Chemistry Letters | 2008

Discovery of azetidinone acids as conformationally-constrained dual PPARα/γ agonists

Wei Wang; Pratik Devasthale; Dennis Farrelly; Liqun Gu; Thomas Harrity; Michael Cap; Cuixia Chu; Lori Kunselman; Nathan Morgan; Randy Ponticiello; Rachel Zebo; Litao Zhang; Kenneth T. Locke; Jonathan Lippy; Kevin O’Malley; Vinayak Hosagrahara; Lisa Zhang; Pathanjali Kadiyala; Chiehying Chang; Jodi K. Muckelbauer; Arthur M. Doweyko; Robert Zahler; Denis E. Ryono; Narayanan Hariharan; Peter T. W. Cheng

A novel class of azetidinone acid-derived dual PPARalpha/gamma agonists has been synthesized for the treatment of diabetes and dyslipidemia. The preferred stereochemistry in this series for binding and functional agonist activity against both PPARalpha and PPARgamma receptors was shown to be 3S,4S. Synthesis, in vitro and in vivo activities of compounds in this series are described. A high-yielding method for N-arylation of azetidinone esters is also described.


Bioorganic & Medicinal Chemistry Letters | 2010

Synthesis and structure–activity relationships of 2-aryl-4-oxazolylmethoxy benzylglycines and 2-aryl-4-thiazolylmethoxy benzylglycines as novel, potent PPARα selective activators- PPARα and PPARγ selectivity modulation

Xiang-Yang Ye; Stephanie Y. Chen; Hao Zhang; Kenneth T. Locke; Kevin O’Malley; Litao Zhang; Raijit Srivastava; Bowman Miao; Daniel Meyers; Hossain Monshizadegan; Debra Search; Denise Grimm; Rongan Zhang; Jonathan Lippy; Celeste Twamley; Jodi K. Muckelbauer; Chiehying Chang; Yongmi An; Vinayak Hosagrahara; Lisa Zhang; T.-J. Yang; Ranjan Mukherjee; Peter T. W. Cheng; Joseph A. Tino

The synthesis and follow-up SAR studies of our development candidate 1 by incorporating 2-aryl-4-oxazolylmethoxy and 2-aryl-4-thiazolylmethoxy moieties into the oxybenzylglycine framework of the PPARalpha/gamma dual agonist muraglitazar is described. SAR studies indicate that different substituents on the aryloxazole/thiazole moieties as well as the choice of carbamate substituent on the glycine moiety can significantly modulate the selectivity of PPARalpha versus PPARgamma. Potent, highly selective PPARalpha activators 2a and 2l, as well as PPARalpha activators with significant PPARgamma activity, such as 2s, were identified. The in vivo pharmacology of these compounds in preclinical animal models as well as their ADME profiles are discussed.


Bioorganic & Medicinal Chemistry Letters | 2008

Design, synthesis, and structure–activity relationships of piperidine and dehydropiperidine carboxylic acids as novel, potent dual PPARα/γ agonists

Xiang-Yang Ye; Yi-Xin Li; Dennis Farrelly; Neil Flynn; Liqun Gu; Kenneth T. Locke; Jonathan Lippy; Kevin O’Malley; Celeste Twamley; Litao Zhang; Denis E. Ryono; Robert Zahler; Narayanan Hariharan; Peter T. W. Cheng

Several series of substituted dehydropiperidine and piperidine-4-carboxylic acid analogs have been designed and synthesized as novel, potent dual PPARalpha/gamma agonists. The SAR of these series of analogs is discussed. A rare double bond migration occurred during the basic hydrolysis of the alpha,beta-unsaturated dehydropiperidine esters 12, and the structures of the migration products were confirmed through a series of 2D NMR experiments.


Analytical Biochemistry | 2016

Development of a RapidFire mass spectrometry assay and a fluorescence assay for the discovery of kynurenine aminotransferase II inhibitors to treat central nervous system disorders.

Hao Lu; Lisa M. Kopcho; Kaushik Ghosh; Mark R. Witmer; Michael F. Parker; Sumit Gupta; Marilyn Paul; Prasad Krishnamurthy; Basanth Laksmaiah; Dianlin Xie; Jeffrey Tredup; Litao Zhang; Lynn M. Abell

Kynurenine aminotransferases convert kynurenine to kynurenic acid and play an important role in the tryptophan degradation pathway. Kynurenic acid levels in brain have been hypothesized to be linked to a number of central nervous system (CNS) disorders. Kynurenine aminotransferase II (KATII) has proven to be a key modulator of kynurenic acid levels in brain and, thus, is an attractive target to treat CNS diseases. A sensitive, high-throughput, label-free RapidFire mass spectrometry assay has been developed for human KATII. Unlike other assays, this method is directly applicable to KATII enzymes from different animal species, which allows us to select proper animal model(s) to evaluate human KATII inhibitors. We also established a coupled fluorescence assay for human KATII. The short assay time and kinetic capability of the fluorescence assay provide a useful tool for orthogonal inhibitor validation and mechanistic studies.


ACS Medicinal Chemistry Letters | 2016

Discovery and Preclinical Evaluation of BMS-711939, an Oxybenzylglycine Based PPARα Selective Agonist

Yan Shi; Jun Li; Lawrence J. Kennedy; Shiwei Tao; Andres S. Hernandez; Zhi Lai; Sean Chen; Henry Wong; Juliang Zhu; Ashok Trehan; Ngiap-Kie Lim; Huiping Zhang; Bang-Chi Chen; Kenneth T. Locke; Kevin O’Malley; Litao Zhang; Rai Ajit Srivastava; Bowman Miao; Daniel Meyers; Hossain Monshizadegan; Debra Search; Denise Grimm; Rongan Zhang; Thomas Harrity; Lori Kunselman; Michael Cap; Jodi K. Muckelbauer; Chiehying Chang; Stanley R. Krystek; Yi-Xin Li

BMS-711939 (3) is a potent and selective peroxisome proliferator-activated receptor (PPAR) α agonist, with an EC50 of 4 nM for human PPARα and >1000-fold selectivity vs human PPARγ (EC50 = 4.5 μM) and PPARδ (EC50 > 100 μM) in PPAR-GAL4 transactivation assays. Compound 3 also demonstrated excellent in vivo efficacy and safety profiles in preclinical studies and thus was chosen for further preclinical evaluation. The synthesis, structure-activity relationship (SAR) studies, and in vivo pharmacology of 3 in preclinical animal models as well as its ADME profile are described.


Analytical Biochemistry | 2016

Building homogeneous time-resolved fluorescence resonance energy transfer assays for characterization of bivalent inhibitors of an inhibitor of apoptosis protein target.

Charu Chaudhry; Jonathan Davis; Yong Zhang; Shana Posy; Ming Lei; Henry Shen; Chunhong Yan; Brigitte Devaux; Litao Zhang; Yuval Blat; William J. Metzler; Robert M. Borzilleri; Randy Talbott

XIAP (X-chromosome-linked inhibitor of apoptosis protein) is a central apoptosis regulator that blocks cell death by inhibiting caspase-3, caspase-7, and caspase-9 via binding interactions with the XIAP BIR2 and BIR3 domains (where BIR is baculovirus IAP repeat). Smac protein, in its dimeric form, effectively antagonizes XIAP by concurrently targeting both its BIR2 and BIR3 domains. Here we describe the development of highly sensitive homogeneous time-resolved fluorescence resonance energy transfer (HTRF) assays to measure binding affinities of potent bivalent peptidomimetic inhibitors of XIAP. Our results indicate that these assays can differentiate Smac-mimetic inhibitors with a wide range of binding affinities down to the picomolar range. Furthermore, we demonstrate the utility of these fluorescent tools for characterization of inhibitor off-rates, which as a crucial determinant of target engagement and cellular potency is another important parameter to guide optimization in a structure-based drug discovery effort. Our study also explores how increased inhibitor valency can lead to enhanced potency at multimeric proteins such as IAP.

Collaboration


Dive into the Litao Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge