Jonathan M. Coquet
University of Melbourne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jonathan M. Coquet.
Journal of Experimental Medicine | 2010
Dimitra Zotos; Jonathan M. Coquet; Yang Zhang; Amanda Light; Kathy D'Costa; Axel Kallies; Lynn M. Corcoran; Dale I. Godfrey; Kai-Michael Toellner; Mark J. Smyth; Stephen L. Nutt; David M. Tarlinton
Germinal centers (GCs) are sites of B cell proliferation, somatic hypermutation, and selection of variants with improved affinity for antigen. Long-lived memory B cells and plasma cells are also generated in GCs, although how B cell differentiation in GCs is regulated is unclear. IL-21, secreted by T follicular helper cells, is important for adaptive immune responses, although there are conflicting reports on its target cells and mode of action in vivo. We show that the absence of IL-21 signaling profoundly affects the B cell response to protein antigen, reducing splenic and bone marrow plasma cell formation and GC persistence and function, influencing their proliferation, transition into memory B cells, and affinity maturation. Using bone marrow chimeras, we show that these activities are primarily a result of CD3-expressing cells producing IL-21 that acts directly on B cells. Molecularly, IL-21 maintains expression of Bcl-6 in GC B cells. The absence of IL-21 or IL-21 receptor does not abrogate the appearance of T cells in GCs or the appearance of CD4 T cells with a follicular helper phenotype. IL-21 thus controls fate choices of GC B cells directly.
Journal of Experimental Medicine | 2005
Nadine Y. Crowe; Jonathan M. Coquet; Stuart P. Berzins; Konstantinos Kyparissoudis; Rachael Keating; Daniel G. Pellicci; Yoshihiro Hayakawa; Dale I. Godfrey; Mark J. Smyth
We showed previously that NKT cell–deficient TCR Jα18−/− mice are more susceptible to methylcholanthrene (MCA)-induced sarcomas, and that normal tumor surveillance can be restored by adoptive transfer of WT liver-derived NKT cells. Liver-derived NKT cells were used in these studies because of their relative abundance in this organ, and it was assumed that they were representative of NKT cells from other sites. We compared NKT cells from liver, thymus, and spleen for their ability to mediate rejection of the sarcoma cell line (MCA-1) in vivo, and found that this was a specialized function of liver-derived NKT cells. Furthermore, when CD4+ and CD4− liver-derived NKT cells were administered separately, MCA-1 rejection was mediated primarily by the CD4− fraction. Very similar results were achieved using the B16F10 melanoma metastasis model, which requires NKT cell stimulation with α-galactosylceramide. The impaired ability of thymus-derived NKT cells was due, in part, to their production of IL-4, because tumor immunity was clearly enhanced after transfer of IL-4–deficient thymus-derived NKT cells. This is the first study to demonstrate the existence of functionally distinct NKT cell subsets in vivo and may shed light on the long-appreciated paradox that NKT cells function as immunosuppressive cells in some disease models, whereas they promote cell-mediated immunity in others.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Jonathan M. Coquet; Sumone Chakravarti; Konstantinos Kyparissoudis; Finlay W. McNab; Lauren A. Pitt; Brent S. McKenzie; Stuart P. Berzins; Mark J. Smyth; Dale I. Godfrey
NKT cell subsets can be divided based on CD4 and NK1.1 expression and tissue of origin, but the developmental and functional relationships between the different subsets still are poorly understood. A comprehensive study of 19 cytokines across different NKT cell subsets revealed that no two NKT subpopulations exhibited the same cytokine profile, and, remarkably, the amounts of each cytokine produced varied by up to 100-fold or more among subsets. This study also revealed the existence of a population of CD4−NK1.1− NKT cells that produce high levels of the proinflammatory cytokine IL-17 within 2–3 h of activation. On intrathymic transfer these cells develop into mature CD4−NK1.1+ but not into CD4+NK1.1+ NKT cells, indicating that CD4−NK1.1− NKT cells include an IL-17–producing subpopulation, and also mark the elusive branch point for CD4+ and CD4− NKT cell sublineages.
Journal of Immunology | 2007
Jonathan M. Coquet; Konstantinos Kyparissoudis; Daniel G. Pellicci; Gurdyal S. Besra; Stuart P. Berzins; Mark J. Smyth; Dale I. Godfrey
The common γ-chain cytokine, IL-21, is produced by CD4+ T cells and mediates potent effects on a variety of immune cells including NK, T, and B cells. NKT cells express the receptor for IL-21; however, the effect of this cytokine on NKT cell function has not been studied. We show that IL-21 on its own enhances survival of NKT cells in vitro, and IL-21 increases the proliferation of NKT cells in combination with IL-2 or IL-15, and particularly with the CD1d-restricted glycosphingolipid Ag α-galactosylceramide. Similar to its effects on NK cells, IL-21 enhances NKT cell granular morphology, including granzyme B expression, and some inhibitory NK receptors, including Ly49C/I and CD94. IL-21 also enhanced NKT cell cytokine production in response to anti-CD3/CD28 in vitro. Furthermore, NKT cells may be subject to autocrine IL-21-mediated stimulation because they are potent producers of this cytokine following in vitro stimulation via CD3 and CD28, particularly in conjunction with IL-12 or following in vivo stimulation with α-galactosylceramide. Indeed, NKT cells produced much higher levels of IL-21 than conventional CD4 T cells in this assay. This study demonstrates that NKT cells are potentially a major source of IL-21, and that IL-21 may be an important factor in NKT cell-mediated immune regulation, both in its effects on NK, T, and B cells, as well as direct effects on NKT cells themselves. The influence of IL-21 in NKT cell-dependent models of tumor rejection, microbial clearance, autoimmunity, and allergy should be the subject of future investigations.
Journal of Immunology | 2008
Jonathan M. Coquet; Sumone Chakravarti; Mark J. Smyth; Dale I. Godfrey
Recent studies have suggested that IL-21 is a key factor in the development of IL-17-producing CD4 T cells (Th17) and that the induction of experimental autoimmune encephalomyelitis, which depends on mounting an efficient Th17 response, is reportedly impaired in the absence of IL-21 signaling. In this study, we provide supportive in vitro evidence that IL-21 can drive Th17 responses in conjunction with TGF-β. However, more importantly we also demonstrate, using IL-21- and IL-21R-deficient mice, that IL-21 is not essential for the differentiation of Th17 cells in vitro and in vivo. Moreover, we show that IL-21- and IL-21R-deficient mice are highly susceptible to experimental autoimmune encephalomyelitis with disease scores that were comparable, or even higher at the peak of disease, to those of control mice. Thus, our results challenge the notion that IL-21 is a key factor in driving Th17 immunity and disease.
Journal of Experimental Medicine | 2013
Jonathan M. Coquet; Julie C. Ribot; Nikolina Bąbała; Sabine Middendorp; Gerda van der Horst; Yanling Xiao; Joana F. Neves; Diogo Fonseca-Pereira; Heinz Jacobs; Daniel J. Pennington; Bruno Silva-Santos; Jannie Borst
CD27–CD70 signals are required for optimal development of natural regulatory T cells from the thymus.
Current Topics in Microbiology and Immunology | 2007
Jeremy B. Swann; Jonathan M. Coquet; Mark J. Smyth; Dale I. Godfrey
CD1d-restricted T cells (NKT cells) are potent regulators of a broad range of immune responses. In particular, an abundance of research has focussed on the role of NKT cells in tumor immunity. This field of research has been greatly facilitated by the finding of agonist ligands capable of potently stimulating NKT cells and also animal models where NKT cells have been shown to play a natural role in the surveillance of tumors. Herein, we review the capability of NKT cells to promote the rejection of tumors and the mechanisms by which this occurs. We also highlight a growing field of research that has found that NKT cells are capable of suppressing anti-tumor immunity and discuss the progress to date for the immunotherapeutic use of NKT cells.
Immunity | 2015
Jonathan M. Coquet; Martijn J. Schuijs; Mark J. Smyth; Kim Deswarte; Rudi Beyaert; Harald Braun; Louis Boon; Gunilla B. Karlsson Hedestam; Steven L. Nutt; Hamida Hammad; Bart N. Lambrecht
Asthma is a T helper 2 (Th2)-cell-mediated disease; however, recent findings implicate Th17 and innate lymphoid cells also in regulating airway inflammation. Herein, we have demonstrated profound interleukin-21 (IL-21) production after house dust mite (HDM)-driven asthma by using T cell receptor (TCR) transgenic mice reactive to Dermatophagoides pteronyssinus 1 and an IL-21GFP reporter mouse. IL-21-producing cells in the mediastinal lymph node (mLN) bore characteristics of T follicular helper (Tfh) cells, whereas IL-21(+) cells in the lung did not express CXCR5 (a chemokine receptor expressed by Tfh cells) and were distinct from effector Th2 or Th17 cells. Il21r(-/-) mice developed reduced type 2 responses and the IL-21 receptor (IL-21R) enhanced Th2 cell function in a cell-intrinsic manner. Finally, administration of recombinant IL-21 and IL-25 synergistically promoted airway eosinophilia primarily via effects on CD4(+) lymphocytes. This highlights an important Th2-cell-amplifying function of IL-21-producing CD4(+) T cells in allergic airway inflammation.
Journal of Immunology | 2005
Daniel G. Pellicci; Kirsten J. L. Hammond; Jonathan M. Coquet; Konstantinos Kyparissoudis; Andrew G. Brooks; Katherine Kedzierska; Rachael Keating; Stephen J. Turner; Stuart P. Berzins; Mark J. Smyth; Dale I. Godfrey
NKT cells are typically defined as CD1d-dependent T cells that carry an invariant TCR α-chain and produce high levels of cytokines. Traditionally, these cells were defined as NK1.1+ T cells, although only a few mouse strains express the NK1.1 molecule. A popular alternative marker for NKT cells has been DX5, an Ab that detects the CD49b integrin, expressed by most NK cells and a subset of T cells that resemble NKT cells. Interpretation of studies using DX5 as an NKT cell marker depends on how well DX5 defines NKT cells. Using a range of DX5 and other anti-CD49b Abs, we reveal major differences in reactivity depending on which Ab and which fluorochrome are used. The brightest, PE-conjugated reagents revealed that while most CD1d-dependent NKT cells expressed CD49b, they represented only a minority of CD49b+ T cells. Furthermore, CD49b+ T cell numbers were near normal in CD1d−/− mice that are completely deficient for NKT cells. CD1d tetramer− CD49b+ T cells differ from NKT cells by their activation and memory marker expression, tissue distribution, and CD4/CD8 coreceptor profile. Interestingly, both NKT cells and CD1d tetramer− CD49b+ T cells produce cytokines, but the latter are clearly biased toward Th1-type cytokines, in contrast to NKT cells that produce both Th1 and Th2 cytokines. Finally, we demonstrate that expression of CD49b by NKT cells does not dramatically alter with age, contrasting with earlier reports proposing DX5 as a maturation marker for NKT cells. In summary, our data demonstrate that DX5/CD49b is a poor marker for identifying CD1d-dependent NKT cells.
Immunology and Cell Biology | 2015
Jonathan M. Coquet; Lisa Rausch; Jannie Borst
Upon their activation, CD4 T cells can differentiate into distinct T helper cell subsets with specialised functions. Different T helper cell subsets produce specific cytokines that mediate beneficial and sometimes detrimental effects, depending on the infection or disease setting. CD4 T‐cell priming relies on signals delivered by the T‐cell antigen receptor, co‐stimulatory receptors and cytokine receptors on the CD4 T‐cell surface. Cytokine receptors are well known to deliver instructive signals that direct T helper cell differentiation. However, it is less appreciated that co‐stimulatory receptors also exert potent modulatory effects on this process. In this review, we outline the contribution of co‐stimulatory and co‐inhibitory receptors to the process of T helper cell differentiation, focusing on those pathways for which the underlying mechanisms are best known. Herein, we depict the physiological context of T‐cell priming and emphasise the impact of cell–cell communication on directing T helper cell differentiation.