Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan M. Keller is active.

Publication


Featured researches published by Jonathan M. Keller.


Proceedings of the National Academy of Sciences of the United States of America | 2014

High-throughput combinatorial screening identifies drugs that cooperate with ibrutinib to kill activated B-cell-like diffuse large B-cell lymphoma cells.

Lesley A. Mathews Griner; Rajarshi Guha; Paul Shinn; Ryan M. Young; Jonathan M. Keller; Dongbo Liu; Ian S. Goldlust; Adam Yasgar; Crystal McKnight; Matthew B. Boxer; Damien Y. Duveau; Jian-kang Jiang; Sam Michael; Tim Mierzwa; Wenwei Huang; Martin J. Walsh; Bryan T. Mott; Paresma R. Patel; William Leister; David J. Maloney; Christopher A. LeClair; Ganesha Rai; Ajit Jadhav; Brian D. Peyser; Christopher P. Austin; Scott E. Martin; Anton Simeonov; Marc Ferrer; Louis M. Staudt; Craig J. Thomas

Significance The treatment of cancer is highly reliant on drug combinations. Next-generation, targeted therapeutics are demonstrating interesting single-agent activities in clinical trials; however, the discovery of companion drugs through iterative clinical trial-and-error is not a tenable mechanism to prioritize clinically important combinations for these agents. Herein we describe the results of a large, high-throughput combination screen of the Bruton’s tyrosine kinase inhibitor ibrutinib versus a library of nearly 500 approved and investigational drugs. Multiple ibrutinib combinations were discovered through this study that can be prioritized for clinical examination. The clinical development of drug combinations is typically achieved through trial-and-error or via insight gained through a detailed molecular understanding of dysregulated signaling pathways in a specific cancer type. Unbiased small-molecule combination (matrix) screening represents a high-throughput means to explore hundreds and even thousands of drug–drug pairs for potential investigation and translation. Here, we describe a high-throughput screening platform capable of testing compounds in pairwise matrix blocks for the rapid and systematic identification of synergistic, additive, and antagonistic drug combinations. We use this platform to define potential therapeutic combinations for the activated B-cell–like subtype (ABC) of diffuse large B-cell lymphoma (DLBCL). We identify drugs with synergy, additivity, and antagonism with the Bruton’s tyrosine kinase inhibitor ibrutinib, which targets the chronic active B-cell receptor signaling that characterizes ABC DLBCL. Ibrutinib interacted favorably with a wide range of compounds, including inhibitors of the PI3K-AKT-mammalian target of rapamycin signaling cascade, other B-cell receptor pathway inhibitors, Bcl-2 family inhibitors, and several components of chemotherapy that is the standard of care for DLBCL.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Blockade of oncogenic IκB kinase activity in diffuse large B-cell lymphoma by bromodomain and extraterminal domain protein inhibitors

Michele Ceribelli; Priscilla N. Kelly; Arthur L. Shaffer; George W. Wright; Wenming Xiao; Yibin Yang; Lesley A. Mathews Griner; Rajarshi Guha; Paul Shinn; Jonathan M. Keller; Dongbo Liu; Paresma R. Patel; Marc Ferrer; Shivangi Joshi; Sujata Nerle; Peter Sandy; Emmanuel Normant; Craig J. Thomas; Louis M. Staudt

Significance The activated B-cell–like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer that can only be cured in roughly 40% of cases. These malignant cells rely on the NF-κB signaling pathway for survival. Here, we report that genetic or pharmacologic interference with bromodomain and extraterminal domain (BET) chromatin proteins reduces NF-κB activity and ABC DLBCL viability. Unexpectedly, the mechanism involves inhibition of IκB kinase, the key cytoplasmic enzyme that activates the NF-κB pathway. The NF-κB pathway in ABC DLBCL is activated by B-cell receptor signaling, which can be blocked by the BTK kinase inhibitor ibrutinib. BET inhibitors synergized with ibrutinib to decrease growth of ABC DLBCL tumors in mouse models. BET inhibitors should be evaluated in ABC DLBCL clinical trials. In the activated B-cell–like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL), NF-κB activity is essential for viability of the malignant cells and is sustained by constitutive activity of IκB kinase (IKK) in the cytoplasm. Here, we report an unexpected role for the bromodomain and extraterminal domain (BET) proteins BRD2 and BRD4 in maintaining oncogenic IKK activity in ABC DLBCL. IKK activity was reduced by small molecules targeting BET proteins as well as by genetic knockdown of BRD2 and BRD4 expression, thereby inhibiting downstream NF-κB–driven transcriptional programs and killing ABC DLBCL cells. Using a high-throughput platform to screen for drug–drug synergy, we observed that the BET inhibitor JQ1 combined favorably with multiple drugs targeting B-cell receptor signaling, one pathway that activates IKK in ABC DLBCL. The BTK kinase inhibitor ibrutinib, which is in clinical development for the treatment of ABC DLBCL, synergized strongly with BET inhibitors in killing ABC DLBCL cells in vitro and in a xenograft mouse model. These findings provide a mechanistic basis for the clinical development of BET protein inhibitors in ABC DLBCL, particularly in combination with other modulators of oncogenic IKK signaling.


Cancer Cell | 2013

Targeting IRAK1 as a Therapeutic Approach for Myelodysplastic Syndrome

Garrett Rhyasen; Lyndsey Bolanos; Jing Fang; Andres Jerez; Mark Wunderlich; Carmela Rigolino; Lesley A. Mathews; Marc Ferrer; Noel Southall; Rajarshi Guha; Jonathan M. Keller; Craig J. Thomas; Levi J. Beverly; Agostino Cortelezzi; Esther Oliva; Maria Cuzzola; Jaroslaw P. Maciejewski; James C. Mulloy; Daniel T. Starczynowski

Myelodysplastic syndromes (MDSs) arise from a defective hematopoietic stem/progenitor cell. Consequently, there is an urgent need to develop targeted therapies capable of eliminating the MDS-initiating clones. We identified that IRAK1, an immune-modulating kinase, is overexpressed and hyperactivated in MDSs. MDS clones treated with a small molecule IRAK1 inhibitor (IRAK1/4-Inh) exhibited impaired expansion and increased apoptosis, which coincided with TRAF6/NF-κB inhibition. Suppression of IRAK1, either by RNAi or with IRAK1/4-Inh, is detrimental to MDS cells, while sparing normal CD34(+) cells. Based on an integrative gene expression analysis, we combined IRAK1 and BCL2 inhibitors and found that cotreatment more effectively eliminated MDS clones. In summary, these findings implicate IRAK1 as a drugable target in MDSs.


Oncogene | 2008

Id1 immortalizes hematopoietic progenitors in vitro and promotes a myeloproliferative disease in vivo

H.C. Suh; W. Leeanansaksiri; M. Ji; Kimberly Klarmann; Katie Renn; J. Gooya; Derek James Smith; Ian K. McNiece; Sanne Lugthart; Ruud Delwel; Jonathan M. Keller

Id1 is frequently overexpressed in many cancer cells, but the functional significance of these findings is not known. To determine if Id1 could contribute to the development of hematopoietic malignancy, we reconstituted mice with hematopoietic cells overexpressing Id1. We showed for the first time that deregulated expression of Id1 leads to a myeloproliferative disease in mice, and immortalizes myeloid progenitors in vitro. In human cells, we demonstrate that Id genes are expressed in human acute myelogenous leukemia cells, and that knock down of Id1 expression inhibits leukemic cell line growth, suggesting that Id1 is required for leukemic cell proliferation. These findings established a causal relationship between Id1 overexpression and hematologic malignancy. Thus, deregulated expression of Id1 may contribute to the initiation of myeloid malignancy, and Id1 may represent a potential therapeutic target for early stage intervention in the treatment of hematopoietic malignancy.


PLOS ONE | 2013

Inhibition of Ceramide Metabolism Sensitizes Human Leukemia Cells to Inhibition of BCL2-Like Proteins

Lavona K. Casson; Lauren Howell; Lesley A. Mathews; Marc Ferrer; Noel Southall; Rajarshi Guha; Jonathan M. Keller; Craig J. Thomas; Leah J. Siskind; Levi J. Beverly

The identification of novel combinations of effective cancer drugs is required for the successful treatment of cancer patients for a number of reasons. First, many “cancer specific” therapeutics display detrimental patient side-effects and second, there are almost no examples of single agent therapeutics that lead to cures. One strategy to decrease both the effective dose of individual drugs and the potential for therapeutic resistance is to combine drugs that regulate independent pathways that converge on cell death. BCL2-like family members are key proteins that regulate apoptosis. We conducted a screen to identify drugs that could be combined with an inhibitor of anti-apoptotic BCL2-like proteins, ABT-263, to kill human leukemia cells lines. We found that the combination of D,L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) hydrochloride, an inhibitor of glucosylceramide synthase, potently synergized with ABT-263 in the killing of multiple human leukemia cell lines. Treatment of cells with PDMP and ABT-263 led to dramatic elevation of two pro-apoptotic sphingolipids, namely ceramide and sphingosine. Furthermore, treatment of cells with the sphingosine kinase inhibitor, SKi-II, also dramatically synergized with ABT-263 to kill leukemia cells and similarly increased ceramides and sphingosine. Data suggest that synergism with ABT-263 requires accumulation of ceramides and sphingosine, as AMP-deoxynojirimycin, (an inhibitor of the glycosphingolipid pathway) did not elevate ceramides or sphingosine and importantly did not sensitize cells to ABT-263 treatment. Taken together, our data suggest that combining inhibitors of anti-apoptotic BCL2-like proteins with drugs that alter the balance of bioactive sphingolipids will be a powerful combination for the treatment of human cancers.


Journal of Biomolecular Screening | 2012

A 1536-Well Quantitative High-Throughput Screen to Identify Compounds Targeting Cancer Stem Cells

Lesley A. Mathews; Jonathan M. Keller; Bonnie Goodwin; Rajarshi Guha; Paul Shinn; Rebecca Mull; Craig J. Thomas; Rachel L. de Kluyver; Thomas J. Sayers; Marc Ferrer

Tumor cell subpopulations called cancer stem cells (CSCs) or tumor-initiating cells (TICs) have self-renewal potential and are thought to drive metastasis and tumor formation. Data suggest that these cells are resistant to current chemotherapy and radiation therapy treatments, leading to cancer recurrence. Therefore, finding new drugs and/or drug combinations that cause death of both the differentiated tumor cells as well as CSC populations is a critical unmet medical need. Here, we describe how cancer-derived CSCs are generated from cancer cell lines using stem cell growth media and nonadherent conditions in quantities that enable high-throughput screening (HTS). A cell growth assay in a 1536-well microplate format was developed with these CSCs and used to screen a focused collection of oncology drugs and clinical candidates to find compounds that are cytotoxic against these highly aggressive cells. A hit selection process that included potency and efficacy measurements during the primary screen allowed us to efficiently identify compounds with potent cytotoxic effects against spheroid-derived CSCs. Overall, this research demonstrates one of the first miniaturized HTS assays using CSCs. The procedures described here should enable further testing of the effect of compounds on CSCs and help determine which pathways need to be targeted to kill them.


Clinical Cancer Research | 2016

Targeting estrogen receptor signaling with fulvestrant enhances immune and chemotherapy-mediated cytotoxicity of human lung cancer

Duane H. Hamilton; Lesley Matthews Griner; Jonathan M. Keller; Xin Hu; Noel Southall; Juan J. Marugan; Justin M. David; Marc Ferrer; Claudia Palena

Purpose: The conversion of tumor cells from an epithelial to a mesenchymal-like phenotype, via a process designated as the epithelial–mesenchymal transition (EMT), is known to mediate tumor resistance to a variety of cell death inducers, including cytotoxic effector immune cells. The goal of this study was to identify and potentially repurpose FDA-approved compounds capable of reducing mesenchymal features of human lung carcinoma cells, which could be used in combination with immunotherapies or chemotherapeutic strategies to improve clinical responses. Experimental Design: In the current report, we have utilized a quantitative high-throughput screening (qHTS) of a pharmaceutical collection of more than 2,000 compounds to identify clinically approved drugs capable of augmenting the sensitivity of mesenchymal-like, lung cancer cells to immune- and chemotherapy-mediated lysis, both in vitro and in vivo. Results: The estrogen receptor antagonist fulvestrant was shown to reduce mesenchymal features of lung carcinoma cells, resulting in tumor sensitization to the cytotoxic effect of antigen-specific T cells, natural killer (NK) effector cells, and chemotherapy both in vivo and in vitro. Conclusions: To our knowledge, this is the first report defining a potential role for estrogenic signaling in promoting tumor resistance to immune-mediated cytotoxicity and chemotherapy in lung cancer. Our data demonstrate a robust association between the acquisition of mesenchymal attributes, therapeutic resistance of lung carcinoma cells, and the expression of estrogen receptor 1 (ESR1), supporting further investigations on the role of estrogen signaling in lung cancer progression via the induction of EMT. Clin Cancer Res; 22(24); 6204–16. ©2016 AACR.


Oncotarget | 2015

Aurora B kinase is a potent and selective target in MYCN-driven neuroblastoma

Dominik Bogen; Jun S. Wei; David O. Azorsa; Pinar Ormanoglu; Eugen Buehler; Rajarshi Guha; Jonathan M. Keller; Lesley A. Mathews Griner; Marc Ferrer; Young K. Song; Hongling Liao; Arnulfo Mendoza; Berkley Gryder; Sivasish Sindri; Jianbin He; Xinyu Wen; Shile Zhang; John F. Shern; Marielle E. Yohe; Sabine Taschner-Mandl; Jason M. Shohet; Craig J. Thomas; Scott E. Martin; Peter F. Ambros; Javed Khan

Despite advances in multimodal treatment, neuroblastoma (NB) is often fatal for children with high-risk disease and many survivors need to cope with long-term side effects from high-dose chemotherapy and radiation. To identify new therapeutic targets, we performed an siRNA screen of the druggable genome combined with a small molecule screen of 465 compounds targeting 39 different mechanisms of actions in four NB cell lines. We identified 58 genes as targets, including AURKB, in at least one cell line. In the drug screen, aurora kinase inhibitors (nine molecules) and in particular the AURKB-selective compound, barasertib, were the most discriminatory with regard to sensitivity for MYCN-amplified cell lines. In an expanded panel of ten NB cell lines, those with MYCN-amplification and wild-type TP53 were the most sensitive to low nanomolar concentrations of barasertib. Inhibition of the AURKB kinase activity resulted in decreased phosphorylation of the known target, histone H3, and upregulation of TP53 in MYCN-amplified, TP53 wild-type cells. However, both wild-type and TP53 mutant MYCN-amplified cell lines arrested in G2/M phase upon AURKB inhibition. Additionally, barasertib induced endoreduplication and apoptosis. Treatment of MYCN-amplified/TP53 wild-type neuroblastoma xenografts resulted in profound growth inhibition and tumor regression. Therefore, aurora B kinase inhibition is highly effective in aggressive neuroblastoma and warrants further investigation in clinical trials.


Current protocols in chemical biology | 2013

Multiplexing High‐Content Flow (HCF) and Quantitative High‐Throughput Screening (qHTS) to Identify Compounds Capable of Decreasing Cell Viability, Activating Caspase 3/7, Expressing Annexin V, and Changing Mitochondrial Membrane Integrity

Lesley A. Mathews; Jonathan M. Keller; Crystal McKnight; Sam Michael; Paul Shinn; Dongbo Liu; Louis M. Staudt; Craig J. Thomas; Marc Ferrer

High‐content flow (HCF) screening systems, such as the iQue Screener and HTFC Screening System from IntelliCyt, have facilitated the implementation of flow cytometry assays for high‐throughput screening. HCF screening systems enable the use of smaller sample volumes and multiplexed assays to simultaneously assess different cellular parameters from a single well. This becomes invaluable when working with cells or compounds that are available in limited quantities or when conducting large‐scale screens. When assays can be miniaturized to a 384‐ or 1536‐well microplate format, it is possible to implement dose‐response‐based high‐throughput screens, also known as quantitative HTS or qHTS. This article describes how qHTS at the new National Center for Advancing Translational Science (NCATS) has been systematically coupled with the HTFC Screening System and Multimetric Apoptosis Screening Kit from IntelliCyt to biologically validate active compounds from primary cell proliferation screens using a model of diffuse large B cell lymphoma (DLBCL). Curr. Protoc. Chem. Biol. 5:195‐212


PLOS ONE | 2016

Chemical Screens Identify Drugs that Enhance or Mitigate Cellular Responses to Antibody-Toxin Fusion Proteins

Antonella Antignani; Lesley A. Mathews Griner; Rajarshi Guha; Nathan Simon; Matteo Pasetto; Jonathan M. Keller; Manjie Huang; Evan Angelus; Ira Pastan; Marc Ferrer; David J. FitzGerald; Craig J. Thomas

The intersection of small molecular weight drugs and antibody-based therapeutics is rarely studied in large scale. Both types of agents are currently part of the cancer armamentarium. However, very little is known about how to combine them in optimal ways. Immunotoxins are antibody-toxin gene fusion proteins engineered to target cancer cells via antibody binding to surface antigens. For fusion proteins derived from Pseudomonas exotoxin (PE), potency relies on the enzymatic domain of the toxin which catalyzes the ADP-ribosylation of EF2 causing inhibition of protein synthesis leading to cell death. Candidate immunotoxins have demonstrated clear value in clinical trials but generally have not been curative as single agents. Therefore we undertook three screens to discover effective combinations that could act synergistically. From the MIPE-3 library of compounds we identified various enhancers of immunotoxin action and at least one major class of inhibitor. Follow-up experiments confirmed the screening data and suggested that immunotoxins when administered with everolimus or nilotinib exhibit favorable combinatory activity and would be candidates for preclinical development. Mechanistic studies revealed that everolimus-immunotoxin combinations acted synergistically on elements of the protein synthetic machinery, including S61 kinase and 4E-BP1 of the mTORC1 pathway. Conversely, PARP inhibitors antagonized immunotoxins and also blocked the toxicity due to native ADP-ribosylating toxins. Thus, our goal of investigating a chemical library was justified based on the identification of several approved compounds that could be developed preclinically as ‘enhancers’ and at least one class of mitigator to be avoided.

Collaboration


Dive into the Jonathan M. Keller's collaboration.

Top Co-Authors

Avatar

Marc Ferrer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Craig J. Thomas

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Rajarshi Guha

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lesley A. Mathews

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Noel Southall

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Paul Shinn

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Dongbo Liu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Louis M. Staudt

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Scott E. Martin

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge