Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan M. Peake is active.

Publication


Featured researches published by Jonathan M. Peake.


Medicine and Science in Sports and Exercise | 2005

Exercise-induced muscle damage, plasma cytokines, and markers of neutrophil activation

Jonathan M. Peake; Katsuhiko Suzuki; Gary Wilson; Matthew D. Hordern; Kazunori Nosaka; Laurel Traeger Mackinnon; Jeff S. Coombes

INTRODUCTION Unaccustomed eccentric exercise often results in muscle damage and neutrophil activation. We examined changes in plasma cytokines stress hormones, creatine kinase activity and myoglobin concentration, neutrophil surface receptor expression, degranulation, and the capacity of neutrophils to generate reactive oxygen species in response to in vitro stimulation after downhill running. METHODS Ten well-trained male runners ran downhill on a treadmill at a gradient of -10% for 45 min at 60% VO2max. Blood was sampled immediately before (PRE) and after (POST), 1 h (1 h POST), and 24 h (24 h POST) after exercise. RESULTS At POST, there were significant increases (P < 0.01) in neutrophil count (32%), plasma interleukin (IL)-6 concentration (460%), myoglobin (Mb) concentration (1100%), and creatine kinase (CK) activity (40%). At 1 h POST, there were further increases above preexercise values for neutrophil count (85%), plasma Mb levels (1800%), and CK activity (56%), and plasma IL-6 concentration remained above preexercise values (410%) (P < 0.01). At 24 h POST, neutrophil counts and plasma IL-6 levels had returned to baseline, whereas plasma Mb concentration (100%) and CK activity (420%) were elevated above preexercise values (P < 0.01). There were no significant changes in neutrophil receptor expression, degranulation and respiratory burst activity, and plasma IL-8 and granulocyte-colony stimulating factor concentrations at any time after exercise. Neutrophil count correlated with plasma Mb concentration at POST (r = 0.64, P < 0.05), and with plasma CK activity at POST (r = 0.83, P < 0.01) and 1 h POST (r = 0.78, P < 0.01). CONCLUSION Neutrophil activation remains unchanged after downhill running in well-trained runners, despite increases in plasma markers of muscle damage.


Medicine and Science in Sports and Exercise | 2002

INTERVAL TRAINING PROGRAM OPTIMIZATION IN HIGHLY TRAINED ENDURANCE CYCLISTS

Paul B. Laursen; Cecilia M. Shing; Jonathan M. Peake; Jeff S. Coombes; David G. Jenkins

PURPOSE The purpose of this study was to examine the influence of three different high-intensity interval training (HIT) regimens on endurance performance in highly trained endurance athletes. METHODS Before, and after 2 and 4 wk of training, 38 cyclists and triathletes (mean +/- SD; age = 25 +/- 6 yr; mass = 75 +/- 7 kg; VO(2peak) = 64.5 +/- 5.2 mL x kg(-1) min(-1)) performed: 1) a progressive cycle test to measure peak oxygen consumption (VO(2peak)) and peak aerobic power output (PPO), 2) a time to exhaustion test (T(max)) at their VO(2peak) power output (P(max)), as well as 3) a 40-km time-trial (TT(40)). Subjects were matched and assigned to one of four training groups (G(2), N = 8, 8 x 60% T(max) at P(max), 1:2 work:recovery ratio; G(2), N = 9, 8 x 60% T(max) at P(max), recovery at 65% HR(max); G(3), N = 10, 12 x 30 s at 175% PPO, 4.5-min recovery; G(CON), N = 11). In addition to G(1), G(2), and G(3) performing HIT twice per week, all athletes maintained their regular low-intensity training throughout the experimental period. RESULTS All HIT groups improved TT(40) performance (+4.4 to +5.8%) and PPO (+3.0 to +6.2%) significantly more than G(CON) (-0.9 to +1.1%; P < 0.05). Furthermore, G(1) (+5.4%) and G(2) (+8.1%) improved their VO(2peak) significantly more than G(CON) (+1.0%; P < 0.05). CONCLUSION The present study has shown that when HIT incorporates P(max) as the interval intensity and 60% of T(max) as the interval duration, already highly trained cyclists can significantly improve their 40-km time trial performance. Moreover, the present data confirm prior research, in that repeated supramaximal HIT can significantly improve 40-km time trial performance.


Medicine and Science in Sports and Exercise | 2011

Antioxidant Supplementation Reduces Skeletal Muscle Mitochondrial Biogenesis

Natalie Strobel; Jonathan M. Peake; Aya Matsumoto; Susan A. Marsh; Jeff S. Coombes; Glenn D. Wadley

PURPOSE Exercise increases the production of reactive oxygen species (ROS) in skeletal muscle, and athletes often consume antioxidant supplements in the belief they will attenuate ROS-related muscle damage and fatigue during exercise. However, exercise-induced ROS may regulate beneficial skeletal muscle adaptations, such as increased mitochondrial biogenesis. We therefore investigated the effects of long-term antioxidant supplementation with vitamin E and α-lipoic acid on changes in markers of mitochondrial biogenesis in the skeletal muscle of exercise-trained and sedentary rats. METHODS Male Wistar rats were divided into four groups: 1) sedentary control diet, 2) sedentary antioxidant diet, 3) exercise control diet, and 4) exercise antioxidant diet. Animals ran on a treadmill 4 d · wk at ∼ 70%VO2max for up to 90 min · d for 14 wk. RESULTS Consistent with the augmentation of skeletal muscle mitochondrial biogenesis and antioxidant defenses, after training there were significant increases in peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) messenger RNA (mRNA) and protein, cytochrome C oxidase subunit IV (COX IV) and cytochrome C protein abundance, citrate synthase activity, Nfe2l2, and SOD2 protein (P < 0.05). Antioxidant supplementation reduced PGC-1α mRNA, PGC-1α and COX IV protein, and citrate synthase enzyme activity (P < 0.05) in both sedentary and exercise-trained rats. CONCLUSIONS Vitamin E and α-lipoic acid supplementation suppresses skeletal muscle mitochondrial biogenesis, regardless of training status.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010

Aging and its effects on inflammation in skeletal muscle at rest and following exercise-induced muscle injury

Jonathan M. Peake; Paul A. Della Gatta; David Cameron-Smith

The worlds elderly population is expanding rapidly, and we are now faced with the significant challenge of maintaining or improving physical activity, independence, and quality of life in the elderly. Counteracting the progressive loss of muscle mass that occurs in the elderly, known as sarcopenia, represents a major hurdle in achieving these goals. Indirect evidence for a role of inflammation in sarcopenia is that markers of systemic inflammation correlate with the loss of muscle mass and strength in the elderly. More direct evidence is that compared with skeletal muscle of young people, the number of macrophages is lower, the gene expression of several cytokines is higher, and stress signaling proteins are activated in skeletal muscle of elderly people at rest. Sarcopenia may also result from inadequate repair and chronic maladaptation following muscle injury in the elderly. Macrophage infiltration and the gene expression of certain cytokines are reduced in skeletal muscle of elderly people compared with young people following exercise-induced muscle injury. Further research is required to identify the cause(s) of inflammation in skeletal muscle of elderly people. Additional work is also needed to expand our understanding of the cells, proteins, and transcription factors that regulate inflammation in the skeletal muscle of elderly people at rest and after exercise. This knowledge is critical for devising strategies to restrict sarcopenia, and improve the health of todays elderly population.


Journal of Strength and Conditioning Research | 2005

INFLUENCE OF HIGH-INTENSITY INTERVAL TRAINING ON ADAPTATIONS IN WELL-TRAINED CYCLISTS

Paul B. Laursen; Cecilia M. Shing; Jonathan M. Peake; Jeff S. Coombes; David G. Jenkins

The purpose of the present study was to examine the influence of 3 different high-intensity interval training regimens on the first and second ventilatory thresholds (VT1 and VT2), anaerobic capacity (ANC), and plasma volume (PV) in well-trained endurance cyclists. Before and after 2 and 4 weeks of training, 38 well-trained cyclists (VO2peak = 64.5 ± 5.2 ml·kg-1·min-1) performed (a) a progressive cycle test to measure VO2peak, peak power output (PPO), VT1, and VT2; (b) a time to exhaustion test (Tmax) at their VO2peak power output (Pmax); and (c) a 40-km time-trial (TT40). Subjects were assigned to 1 of 4 training groups (group 1: n = 8, 8 3 60% Tmax at Pmax, 1:2 work-recovery ratio; group 2: n = 9, 8 × 60% Tmax at Pmax, recovery at 65% maximum heart rate; group 3: n = 10, 12 × 30 seconds at 175% PPO, 4.5-minute recovery; control group: n = 11). The TT40 performance, VO2peak, VT1,VT2, and ANC were all significantly increased in groups 1, 2, and 3 (p < 0.05) but not in the control group. However, PV did not change in response to the 4-week training program. Changes in TT40 performance were modestly related to the changes in VO2peak, VT1, VT2, and ANC (r = 0.41, 0.34, 0.42, and 0.40, respectively; all p < 0.05). In conclusion, the improvements in TT40 performance were related to significant increases in VO2peak, VT1,VT2, and ANC but were not accompanied by significant changes in PV. Thus, peripheral adaptations rather than central adaptations are likely responsible for the improved performances witnessed in well-trained endurance athletes following various forms of high-intensity interval training programs.


Sports Medicine | 2013

Cardiac parasympathetic reactivation following exercise: implications for training prescription.

Jamie Stanley; Jonathan M. Peake; Martin Buchheit

The objective of exercise training is to initiate desirable physiological adaptations that ultimately enhance physical work capacity. Optimal training prescription requires an individualized approach, with an appropriate balance of training stimulus and recovery and optimal periodization. Recovery from exercise involves integrated physiological responses. The cardiovascular system plays a fundamental role in facilitating many of these responses, including thermoregulation and delivery/removal of nutrients and waste products. As a marker of cardiovascular recovery, cardiac parasympathetic reactivation following a training session is highly individualized. It appears to parallel the acute/intermediate recovery of the thermoregulatory and vascular systems, as described by the supercompensation theory. The physiological mechanisms underlying cardiac parasympathetic reactivation are not completely understood. However, changes in cardiac autonomic activity may provide a proxy measure of the changes in autonomic input into organs and (by default) the blood flow requirements to restore homeostasis. Metaboreflex stimulation (e.g. muscle and blood acidosis) is likely a key determinant of parasympathetic reactivation in the short term (0–90 min post-exercise), whereas baroreflex stimulation (e.g. exercise-induced changes in plasma volume) probably mediates parasympathetic reactivation in the intermediate term (1–48 h post-exercise). Cardiac parasympathetic reactivation does not appear to coincide with the recovery of all physiological systems (e.g. energy stores or the neuromuscular system). However, this may reflect the limited data currently available on parasympathetic reactivation following strength/resistance-based exercise of variable intensity. In this review, we quantitatively analyse post-exercise cardiac parasympathetic reactivation in athletes and healthy individuals following aerobic exercise, with respect to exercise intensity and duration, and fitness/training status. Our results demonstrate that the time required for complete cardiac autonomic recovery after a single aerobic-based training session is up to 24 h following low-intensity exercise, 24–48 h following threshold-intensity exercise and at least 48 h following high-intensity exercise. Based on limited data, exercise duration is unlikely to be the greatest determinant of cardiac parasympathetic reactivation. Cardiac autonomic recovery occurs more rapidly in individuals with greater aerobic fitness. Our data lend support to the concept that in conjunction with daily training logs, data on cardiac parasympathetic activity are useful for individualizing training programmes. In the final sections of this review, we provide recommendations for structuring training microcycles with reference to cardiac parasympathetic recovery kinetics. Ultimately, coaches should structure training programmes tailored to the unique recovery kinetics of each individual.


American Journal of Kidney Diseases | 2010

Omega-3 Polyunsaturated Fatty Acids in the Treatment of Kidney Disease

Robert G. Fassett; Glenda C. Gobe; Jonathan M. Peake; Jeff S. Coombes

After more than 25 years of published investigation, including randomized controlled trials, the role of omega-3 polyunsaturated fatty acids in the treatment of kidney disease remains unclear. In vitro and in vivo experimental studies support the efficacy of omega-3 polyunsaturated fatty acids on inflammatory pathways involved with the progression of kidney disease. Clinical investigations have focused predominantly on immunoglobulin A (IgA) nephropathy. More recently, lupus nephritis, polycystic kidney disease, and other glomerular diseases have been investigated. Clinical trials have shown conflicting results for the efficacy of omega-3 polyunsaturated fatty acids in IgA nephropathy, which may relate to varying doses, proportions of eicosapentaenoic acid and docosahexaenoic acid, duration of therapy, and sample size of the study populations. Meta-analyses of clinical trials using omega-3 polyunsaturated fatty acids in IgA nephropathy have been limited by the quality of available studies. However, guidelines suggest that omega-3 polyunsaturated fatty acids should be considered in progressive IgA nephropathy. Omega-3 polyunsaturated fatty acids decrease blood pressure, a known accelerant of kidney disease progression. Well-designed, adequately powered, randomized, controlled clinical trials are required to further investigate the potential benefits of omega-3 polyunsaturated fatty acids on the progression of kidney disease and patient survival.


The Journal of Physiology | 2015

Post-exercise cold water immersion attenuates acute anabolic signalling and long-term adaptations in muscle to strength training

Truls Raastad; James F. Markworth; Vandre C. Figueiredo; Ingrid M. Egner; Anthony Shield; David Cameron-Smith; Jeff S. Coombes; Jonathan M. Peake

Cold water immersion is a popular strategy to recover from exercise. However, whether regular cold water immersion influences muscle adaptations to strength training is not well understood. We compared the effects of cold water immersion and active recovery on changes in muscle mass and strength after 12 weeks of strength training. We also examined the effects of these two treatments on hypertrophy signalling pathways and satellite cell activity in skeletal muscle after acute strength exercise. Cold water immersion attenuated long term gains in muscle mass and strength. It also blunted the activation of key proteins and satellite cells in skeletal muscle up to 2 days after strength exercise. Individuals who use strength training to improve athletic performance, recover from injury or maintain their health should therefore reconsider whether to use cold water immersion as an adjuvant to their training.


Brain Behavior and Immunity | 2008

The effects of acute exercise-induced cortisol on CCR2 expression on human monocytes

Mitsuharu Okutsu; Katsuhiko Suzuki; Toshimichi Ishijima; Jonathan M. Peake; Mitsuru Higuchi

CC-chemokine receptor 2 (CCR2) and its ligand, monocyte chemotactic protein-1 (MCP-1, also known as CCL2), are crucial for the recruitment of monocytes/macrophages to sites of inflammation. We conducted a series of experiments to investigate the relationship between stress, monocyte CCR2 expression and migration activity. First, we collected peripheral blood mononuclear cells (PBMC) from untrained subjects (n=8) and measured CCR2 expression on CD14(+) monocytes cultured with cortisol, epinephrine and norepinephrine. Second, we collected PBMC from the subjects before and after they cycled for 60 min at 70% peak O(2) uptake (VO2(peak)), and measured alterations in CCR2 expression on monocytes following exercise. Third, we cultured PBMC with serum obtained before and after exercise and the glucocorticoid antagonist RU-486 to determine the effect of cortisol on CCR2 expression in vitro. Last, we measured the ability of PBMC treated with serum or cortisol to migrate through membrane filters in response to CCL2. Cortisol (but not epinephrine or norepinephrine) increased CCR2 expression on monocytes in a dose- and time-dependent manner. Exercise did not influence CCR2 expression on PBMC, whereas incubation of PBMC with post-exercise serum significantly increased CCR2 expression. Both cortisol and post-exercise serum increased the migration of PBMC toward CCL2. The increase in CCR2 expression on PBMC following stimulation with cortisol and serum was blocked by the glucocorticoid receptor antagonist RU-486. In conclusion, cortisol released during exercise increased monocyte CCR2 expression and migration activity in vitro. These alterations may influence inflammation and regeneration of damaged tissue after acute stress.


Journal of Applied Physiology | 2017

Muscle damage and inflammation during recovery from exercise

Jonathan M. Peake; Oliver Neubauer; Paul A. Della Gatta; Kazunori Nosaka

Unaccustomed exercise consisting of eccentric (i.e., lengthening) muscle contractions often results in muscle damage characterized by ultrastructural alterations in muscle tissue, clinical signs, and symptoms (e.g., reduced muscle strength and range of motion, increased muscle soreness and swelling, efflux of myocellular proteins). The time course of recovery following exercise-induced muscle damage depends on the extent of initial muscle damage, which in turn is influenced by the intensity and duration of exercise, joint angle/muscle length, and muscle groups used during exercise. The effects of these factors on muscle strength, soreness, and swelling are well characterized. By contrast, much less is known about how they affect intramuscular inflammation and molecular aspects of muscle adaptation/remodeling. Although inflammation has historically been viewed as detrimental for recovery from exercise, it is now generally accepted that inflammatory responses, if tightly regulated, are integral to muscle repair and regeneration. Animal studies have revealed that various cell types, including neutrophils, macrophages, mast cells, eosinophils, CD8 and T-regulatory lymphocytes, fibro-adipogenic progenitors, and pericytes help to facilitate muscle tissue regeneration. However, more research is required to determine whether these cells respond to exercise-induced muscle damage. A large body of research has investigated the efficacy of physicotherapeutic, pharmacological, and nutritional interventions for reducing the signs and symptoms of exercise-induced muscle damage, with mixed results. More research is needed to examine if/how these treatments influence inflammation and muscle remodeling during recovery from exercise.

Collaboration


Dive into the Jonathan M. Peake's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Truls Raastad

Norwegian School of Sport Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge