Paul A. Della Gatta
Deakin University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paul A. Della Gatta.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010
Jonathan M. Peake; Paul A. Della Gatta; David Cameron-Smith
The worlds elderly population is expanding rapidly, and we are now faced with the significant challenge of maintaining or improving physical activity, independence, and quality of life in the elderly. Counteracting the progressive loss of muscle mass that occurs in the elderly, known as sarcopenia, represents a major hurdle in achieving these goals. Indirect evidence for a role of inflammation in sarcopenia is that markers of systemic inflammation correlate with the loss of muscle mass and strength in the elderly. More direct evidence is that compared with skeletal muscle of young people, the number of macrophages is lower, the gene expression of several cytokines is higher, and stress signaling proteins are activated in skeletal muscle of elderly people at rest. Sarcopenia may also result from inadequate repair and chronic maladaptation following muscle injury in the elderly. Macrophage infiltration and the gene expression of certain cytokines are reduced in skeletal muscle of elderly people compared with young people following exercise-induced muscle injury. Further research is required to identify the cause(s) of inflammation in skeletal muscle of elderly people. Additional work is also needed to expand our understanding of the cells, proteins, and transcription factors that regulate inflammation in the skeletal muscle of elderly people at rest and after exercise. This knowledge is critical for devising strategies to restrict sarcopenia, and improve the health of todays elderly population.
PLOS ONE | 2014
Evelyn Zacharewicz; Paul A. Della Gatta; John V. Reynolds; Andrew Garnham; Tamsyn M. Crowley; Aaron P. Russell; Séverine Lamon
Background Over the course of ageing there is a natural and progressive loss of skeletal muscle mass. The onset and progression of age-related muscle wasting is associated with an attenuated activation of Akt-mTOR signalling and muscle protein synthesis in response to anabolic stimuli such as resistance exercise. MicroRNAs (miRNAs) are novel and important post-transcriptional regulators of numerous cellular processes. The role of miRNAs in the regulation of muscle protein synthesis following resistance exercise is poorly understood. This study investigated the changes in skeletal muscle miRNA expression following an acute bout of resistance exercise in young and old subjects with a focus on the miRNA species predicted to target Akt-mTOR signalling. Results Ten young (24.2±0.9 years) and 10 old (66.6±1.1 years) males completed an acute resistance exercise bout known to maximise muscle protein synthesis, with muscle biopsies collected before and 2 hours after exercise. We screened the expression of 754 miRNAs in the muscle biopsies and found 26 miRNAs to be regulated with age, exercise or a combination of both factors. Nine of these miRNAs are highly predicted to regulate targets within the Akt-mTOR signalling pathway and 5 miRNAs have validated binding sites within the 3′ UTRs of several members of the Akt-mTOR signalling pathway. The miR-99/100 family of miRNAs notably emerged as potentially important regulators of skeletal muscle mass in young and old subjects. Conclusion This study has identified several miRNAs that were regulated with age or with a single bout of resistance exercise. Some of these miRNAs were predicted to influence Akt-mTOR signalling, and therefore potentially skeletal muscle mass. These miRNAs should be considered as candidate targets for in vivo modulation.
Free Radical Biology and Medicine | 2015
Dale Morrison; Jed Hughes; Paul A. Della Gatta; Shaun Mason; Séverine Lamon; Aaron P. Russell; Glenn D. Wadley
BACKGROUND It is clear that reactive oxygen species (ROS) produced during skeletal muscle contraction have a regulatory role in skeletal muscle adaptation to endurance exercise. However, there is much controversy in the literature regarding whether attenuation of ROS by antioxidant supplementation can prevent these cellular adaptations. Therefore, the aim of this study was to determine whether vitamin C and E supplementation attenuates performance and cellular adaptations following acute endurance exercise and endurance training. METHODS A double-blinded, placebo-controlled randomized control trial was conducted in eleven healthy young males. Participants were matched for peak oxygen consumption (VO 2peak) and randomly allocated to placebo or antioxidant (vitamin C (2 × 500 mg/day) and E (400 IU/day)) groups. Following a four-week supplement loading period, participants completed acute exercise (10 × 4 min cycling at 90% VO 2peak, 2 min active recovery). Vastus lateralis muscle samples were collected pre-, immediately-post- and 3h-post-exercise. Participants then completed four weeks of training (3 days/week) using the aforementioned exercise protocol while continuing supplementation. Following exercise training, participants again completed an acute exercise bout with muscle biopsies. RESULTS Acute exercise tended to increase skeletal muscle oxidative stress as measured by oxidized glutathione (GSSG) (P=0.058) and F2-isoprostanes (P=0.056), with no significant effect of supplementation. Acute exercise significantly increased mRNA levels of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), mitochondrial transcription factor A (TFAM) and PGC related coactivator (PRC), with no effect of supplementation. Following endurance training, supplementation did not prevent significantly increased VO 2peak, skeletal muscle levels of citrate synthase activity or mRNA or protein abundance of cytochrome oxidase subunit 4 (COX IV) (P<0.05). However, following training, vitamin C and E supplementation significantly attenuated increased skeletal muscle superoxide dismutase (SOD) activity and protein abundance of SOD2 and TFAM. CONCLUSION Following acute exercise, supplementation with vitamin C and E did not attenuate skeletal muscle oxidative stress or increased gene expression of mitochondrial biogenesis markers. However, supplementation attenuated some (SOD, TFAM) of the increased skeletal muscle adaptations following training in healthy young men.
Journal of Applied Physiology | 2017
Jonathan M. Peake; Oliver Neubauer; Paul A. Della Gatta; Kazunori Nosaka
Unaccustomed exercise consisting of eccentric (i.e., lengthening) muscle contractions often results in muscle damage characterized by ultrastructural alterations in muscle tissue, clinical signs, and symptoms (e.g., reduced muscle strength and range of motion, increased muscle soreness and swelling, efflux of myocellular proteins). The time course of recovery following exercise-induced muscle damage depends on the extent of initial muscle damage, which in turn is influenced by the intensity and duration of exercise, joint angle/muscle length, and muscle groups used during exercise. The effects of these factors on muscle strength, soreness, and swelling are well characterized. By contrast, much less is known about how they affect intramuscular inflammation and molecular aspects of muscle adaptation/remodeling. Although inflammation has historically been viewed as detrimental for recovery from exercise, it is now generally accepted that inflammatory responses, if tightly regulated, are integral to muscle repair and regeneration. Animal studies have revealed that various cell types, including neutrophils, macrophages, mast cells, eosinophils, CD8 and T-regulatory lymphocytes, fibro-adipogenic progenitors, and pericytes help to facilitate muscle tissue regeneration. However, more research is required to determine whether these cells respond to exercise-induced muscle damage. A large body of research has investigated the efficacy of physicotherapeutic, pharmacological, and nutritional interventions for reducing the signs and symptoms of exercise-induced muscle damage, with mixed results. More research is needed to examine if/how these treatments influence inflammation and muscle remodeling during recovery from exercise.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2012
Luke Vella; Marissa K. Caldow; Amy E. Larsen; Daniella Tassoni; Paul A. Della Gatta; Petra Gran; Aaron P. Russell; David Cameron-Smith
Intense resistance exercise causes a significant inflammatory response. NF-κB has been identified as a prospective key transcription factor mediating the postexercise inflammatory response. The purpose of this study was to determine whether a single bout of intense resistance exercise regulates NF-κB signaling in human skeletal muscle. Muscle biopsy samples were obtained from the vastus lateralis of five recreationally active, but not strength-trained, males (21.9 ± 1.3 yr) prior to, and at 2 and 4 h following, a single bout of intense resistance exercise. A further five subjects (4 males, 1 female) (23 ± 0.89 yr) were recruited as a nonexercise control group to examine the effect of the muscle biopsy protocol on key markers of skeletal muscle inflammation. Protein levels of IκBα and phosphorylated NF-κB (p65), as well as the mRNA expression of inflammatory myokines monocyte chemoattractant protein 1 (MCP-1), IL-6, and IL-8 were measured. Additionally, NF-κB (p65) DNA binding to the promoter regions of MCP-1, IL-6, and IL-8 was investigated. IκBα protein levels decreased, while p-NF-κB (p65) protein levels increased 2 h postexercise and returned to near-baseline levels by 4-h postexercise. Immunohistochemical data verified these findings, illustrating an increase in p-NF-κB (p65) protein levels, and nuclear localization at 2 h postexercise. Furthermore, NF-κB DNA binding to MCP-1, IL-6, and IL-8 promoter regions increased significantly 2 h postexercise as did mRNA levels of these myokines. No significant change was observed in the nonexercise control group. These novel data provide evidence that intense resistance exercise transiently activates NF-κB signaling in human skeletal muscle during the first few hours postexercise. These findings implicate NF-κB in the transcriptional control of myokines known to be central to the postexercise inflammatory response.
Physiological Reports | 2014
Randall F. D'Souza; James F. Markworth; Vandre C. Figueiredo; Paul A. Della Gatta; Aaron C. Petersen; Cameron J. Mitchell; David Cameron-Smith
Resistance exercise and whey protein supplementation are effective strategies to activate muscle cell anabolic signaling and ultimately promote increases in muscle mass and strength. In the current study, 46 healthy older men aged 60–75 (69.0 ± 0.55 years, 85.9 ± 1.8 kg, 176.8 ± 1.0 cm) performed a single bout of unaccustomed lower body resistance exercise immediately followed by ingestion of a noncaloric placebo beverage or supplement containing 10, 20, 30, or 40 g of whey protein concentrate (WPC). Intramuscular amino acid levels in muscle biopsy samples were measured by Gas Chromatography–Mass Spectrometry (GC‐MS) at baseline (before exercise and WPC supplementation) plus at 2 h and 4 h post exercise. Additionally, the extent of p70S6K phosphorylation at Thr389 in muscle biopsy homogenates was assessed by western blot. Resistance exercise alone reduced intramuscular branch chain amino acid (BCAA; leucine, isoleucine, and valine) content. Supplementation with increasing doses of whey protein prevented this fall in muscle BCAAs during postexercise recovery and larger doses (30 g and 40 g) significantly augmented postexercise muscle BCAA content above that observed following placebo ingestion. Additionally, the fold change in the phosphorylation of p70S6K (Thr389) at 2 h post exercise was correlated with the dose of whey protein consumed (r = 0.51, P < 001) and was found to be significantly correlated with intramuscular leucine content (r = 0.32, P = 0.026). Intramuscular BCAAs, and leucine in particular, appear to be important regulators of anabolic signaling in aged human muscle during postexercise recovery via reversal of exercise‐induced declines in intramuscular BCAAs.
BMC Physiology | 2011
Marissa K. Trenerry; Paul A. Della Gatta; David Cameron-Smith
BackgroundA population of satellite cells exists in skeletal muscle. These cells are thought to be primarily responsible for postnatal muscle growth and injury-induced muscle regeneration. The Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling cascade has a crucial role in regulating myogenesis. In rodent skeletal muscle, STAT3 is essential for satellite cell migration and myogenic differentiation, regulating the expression of myogenic factors. The aim of the present study was to investigate and compare the expression profile of JAK/STAT family members, using cultured primary human skeletal muscle cells.ResultsNear confluent proliferating myoblasts were induced to differentiate for 1, 5 or 10 days. During these developmental stages, members of the JAK/STAT family were examined, along with factors known to regulate myogenesis. We demonstrate the phosphorylation of JAK1 and STAT1 only during myoblast proliferation, while JAK2 and STAT3 phosphorylation increases during differentiation. These increases were correlated with the upregulation of genes associated with muscle maturation and hypertrophy.ConclusionsTaken together, these results provide insight into JAK/STAT signaling in human skeletal muscle development, and confirm recent observations in rodents.
Frontiers in Physiology | 2014
Renae J. Stefanetti; Evelyn Zacharewicz; Paul A. Della Gatta; Andrew Garnham; Aaron P. Russell; Séverine Lamon
Skeletal muscle atrophy is a critical component of the ageing process. Age-related muscle wasting is due to disrupted muscle protein turnover, a process mediated in part by the ubiquitin proteasome pathway (UPP). Additionally, older subjects have been observed to have an attenuated anabolic response, at both the molecular and physiological levels, following a single-bout of resistance exercise (RE). We investigated the expression levels of the UPP-related genes and proteins involved in muscle protein degradation in 10 older (60–75 years) vs. 10 younger (18–30 years) healthy male subjects at basal as well as 2 h after a single-bout of RE. MURF1, atrogin-1 and FBXO40, their substrate targets PKM2, myogenin, MYOD, MHC and EIF3F as well as MURF1 and atrogin-1 transcriptional regulators FOXO1 and FOXO3 gene and/or protein expression levels were measured via real time PCR and western blotting, respectively. At basal, no age-related difference was observed in the gene/protein levels of atrogin-1, MURF1, myogenin, MYOD and FOXO1/3. However, a decrease in FBXO40 mRNA and protein levels was observed in older subjects, while PKM2 protein was increased. In response to RE, MURF1, atrogin-1 and FBXO40 mRNA were upregulated in both the younger and older subjects, with changes observed in protein levels. In conclusion, UPP-related gene/protein expression is comparably regulated in healthy young and old male subjects at basal and following RE. These findings suggest that UPP signaling plays a limited role in the process of age-related muscle wasting. Future studies are required to investigate additional proteolytic mechanisms in conjunction with skeletal muscle protein breakdown (MPB) measurements following RE in older vs. younger subjects.
Frontiers in Physiology | 2016
Séverine Lamon; Evelyn Zacharewicz; Emily Arentson-Lantz; Paul A. Della Gatta; Lobna Ghobrial; Frederico Gerlinger-Romero; Andrew Garnham; Douglas Paddon-Jones; Aaron P. Russell
Purpose: Erythropoietin (EPO) is a renal cytokine that is primarily involved in hematopoiesis while also playing a role in non-hematopoietic tissues expressing the EPO-receptor (EPOR). The EPOR is present in human skeletal muscle. In mouse skeletal muscle, EPO stimulation can activate the AKT serine/threonine kinase 1 (AKT) signaling pathway, the main positive regulator of muscle protein synthesis. We hypothesized that a single intravenous EPO injection combined with acute resistance exercise would have a synergistic effect on skeletal muscle protein synthesis via activation of the AKT pathway. Methods: Ten young (24.2 ± 0.9 years) and 10 older (66.6 ± 1.1 years) healthy subjects received a primed, constant infusion of [ring-13C6] L-phenylalanine and a single injection of 10,000 IU epoetin-beta or placebo in a double-blind randomized, cross-over design. 2 h after the injection, the subjects completed an acute bout of leg extension resistance exercise to stimulate skeletal muscle protein synthesis. Results: Significant interaction effects in the phosphorylation levels of the members of the AKT signaling pathway indicated a differential activation of protein synthesis signaling in older subjects when compared to young subjects. However, EPO offered no synergistic effect on vastus lateralis mixed muscle protein synthesis rate in young or older subjects. Conclusions: Despite its ability to activate the AKT pathway in skeletal muscle, an acute EPO injection had no additive or synergistic effect on the exercise-induced activation of muscle protein synthesis or muscle protein synthesis signaling pathways.
Frontiers in Physiology | 2016
Stavroula Tsitkanou; Paul A. Della Gatta; Aaron P. Russell
Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND), is a fatal motor neuron disorder. It results in progressive degeneration and death of upper and lower motor neurons, protein aggregation, severe muscle atrophy and respiratory insufficiency. Median survival with ALS is between 2 and 5 years from the onset of symptoms. ALS manifests as either familial ALS (FALS) (~10% of cases) or sporadic ALS (SALS), (~90% of cases). Mutations in the copper/zinc (CuZn) superoxide dismutase (SOD1) gene account for ~20% of FALS cases and the mutant SOD1 mouse model has been used extensively to help understand the ALS pathology. As the precise mechanisms causing ALS are not well understood there is presently no cure. Recent evidence suggests that motor neuron degradation may involve a cell non-autonomous phenomenon involving numerous cell types within various tissues. Skeletal muscle is now considered as an important tissue involved in the pathogenesis of ALS by activating a retrograde signaling cascade that degrades motor neurons. Skeletal muscle heath and function are regulated by numerous factors including satellite cells, mitochondria and microRNAs. Studies demonstrate that in ALS these factors show various levels of dysregulation within the skeletal muscle. This review provides an overview of their dysregulation in various ALS models as well as how they may contribute individually and/or synergistically to the ALS pathogenesis.