Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan M. Taylor is active.

Publication


Featured researches published by Jonathan M. Taylor.


Journal of The Optical Society of America A-optics Image Science and Vision | 2009

Multipole expansion of Bessel and Gaussian beams for Mie scattering calculations

Jonathan M. Taylor; Gordon D. Love

Multipole expansions of Bessel and Gaussian beams, suitable for use in Mie scattering calculations, are derived. These results allow Mie scattering calculations to be carried out considerably faster than existing methods, something that is of particular interest for time evolution simulations where large numbers of scattering calculations must be performed. An analytic result is derived for the Bessel beam that improves on a previously published expression requiring the evaluation of an integral. An analogous expression containing a single integral, similar to existing results quoted, but not derived, in literature, is derived for a Gaussian beam, valid from the paraxial limit all the way to arbitrarily high numerical apertures.


Journal of Biomedical Optics | 2011

Real-time optical gating for three-dimensional beating heart imaging

Jonathan M. Taylor; Christopher D. Saunter; Gordon D. Love; John M. Girkin; Deborah J. Henderson; Bill Chaudhry

We demonstrate real-time microscope image gating to an arbitrary position in the cycle of the beating heart of a zebrafish embryo. We show how this can be used for high-precision prospective gating of fluorescence image slices of the moving heart. We also present initial results demonstrating the application of this technique to 3-D structural imaging of the beating embryonic heart.


Science Advances | 2017

Adaptive foveated single-pixel imaging with dynamic supersampling

David Phillips; Ming-Jie Sun; Jonathan M. Taylor; M. Edgar; Stephen M. Barnett; G. Gibson; Miles J. Padgett

The performance of a single-pixel computational video camera is enhanced by mimicking the compressive features of animal vision. In contrast to conventional multipixel cameras, single-pixel cameras capture images using a single detector that measures the correlations between the scene and a set of patterns. However, these systems typically exhibit low frame rates, because to fully sample a scene in this way requires at least the same number of correlation measurements as the number of pixels in the reconstructed image. To mitigate this, a range of compressive sensing techniques have been developed which use a priori knowledge to reconstruct images from an undersampled measurement set. Here, we take a different approach and adopt a strategy inspired by the foveated vision found in the animal kingdom—a framework that exploits the spatiotemporal redundancy of many dynamic scenes. In our system, a high-resolution foveal region tracks motion within the scene, yet unlike a simple zoom, every frame delivers new spatial information from across the entire field of view. This strategy rapidly records the detail of quickly changing features in the scene while simultaneously accumulating detail of more slowly evolving regions over several consecutive frames. This architecture provides video streams in which both the resolution and exposure time spatially vary and adapt dynamically in response to the evolution of the scene. The degree of local frame rate enhancement is scene-dependent, but here, we demonstrate a factor of 4, thereby helping to mitigate one of the main drawbacks of single-pixel imaging techniques. The methods described here complement existing compressive sensing approaches and may be applied to enhance computational imagers that rely on sequential correlation measurements.


Optics Express | 2008

Emergent properties in optically bound matter.

Jonathan M. Taylor; L. Y. Wong; Colin D. Bain; Gordon D. Love

Sub-micron particles have been observed to spontaneously form regular two-dimensional structures in counterpropagating evanescent laser fields. We show that collective properties of large numbers of optically-trapped particles can be qualitatively different to the properties of small numbers. This is demonstrated both with a computer model and with experimental results. As the number of particles in the structure is increased, optical binding forces can be sufficiently large to overcome the optical landscape imposed by the interference fringes of the laser beams and impose a different, competing structure.


International Journal of Cardiology | 2013

Laser-targeted ablation of the zebrafish embryonic ventricle : a novel model of cardiac injury and repair.

Gianfranco Matrone; Jonathan M. Taylor; Kathryn S. Wilson; James Baily; Gordon D. Love; John M. Girkin; John J. Mullins; Carl Tucker; Martin A. Denvir

Background While the adult zebrafish (Danio rerio) heart demonstrates a remarkable capacity for self-renewal following apical resection little is known about the response to injury in the embryonic heart. Methods Injury to the beating zebrafish embryo heart was induced by laser using a transgenic zebrafish expressing cardiomyocyte specific green fluorescent protein. Changes in ejection fraction (EF), heart rate (HR), and caudal vein blood flow (CVBF) assessed by video capture techniques were assessed at 2, 24 and 48 h post-laser. Change in total and mitotic ventricular cardiomyocyte number following laser injury was also assessed by counting respectively DAPI (VCt) and Phospho-histone H3 (VCm) positive nuclei in isolated hearts using confocal microscopy. Results Laser injury to the ventricle resulted in bradycardia and mild bleeding into the pericardium. At 2 h post-laser injury, there was a significant reduction in cardiac performance in lasered-hearts compared with controls (HR 117 ± 11 vs 167 ± 9 bpm, p ≤ 0.001; EF 14.1 ± 1.8 vs 20.1 ± 1.3%, p ≤ 0.001; CVBF 103 ± 15 vs 316 ± 13μms− 1, p ≤ 0.001, respectively). Isolated hearts showed a significant reduction in VCt at 2 h post-laser compared to controls (195 ± 15 vs 238 ± 15, p ≤ 0.05). Histology showed necrosis and apoptosis (TUNEL assay) at the site of laser injury. At 24 h post-laser cardiac performance and VCt had recovered fully to control levels. Pretreatment with the cell-cycle inhibitor, aphidicolin, significantly inhibited functional recovery of the ventricle accompanied by a significant inhibition of cardiomyocyte proliferation. Conclusions Laser-targeted injury of the zebrafish embryonic heart is a novel and reproducible model of cardiac injury and repair suitable for pharmacological and molecular studies.


PLOS ONE | 2012

Discrete choice experiment to evaluate factors that influence preferences for antibiotic prophylaxis in pediatric oncology.

Dean A. Regier; Caroline Diorio; Marie-Chantal Ethier; Amanda Alli; Sarah Alexander; Katherine M. Boydell; Adam Gassas; Jonathan M. Taylor; Charis Kellow; Denise Mills; Lillian Sung

Background Bacterial and fungal infections in pediatric oncology patients cause morbidity and mortality. The clinical utility of antimicrobial prophylaxis in children is uncertain and the personal utility of these agents is disputed. Objectives were to use a discrete choice experiment to: (1) describe the importance of attributes to parents and healthcare providers when deciding between use and non-use of antibacterial and antifungal prophylaxis; and (2) estimate willingness-to-pay for prophylactic strategies. Methods Attributes were chances of infection, death and side effects, route of administration and cost of pharmacotherapy. Respondents were randomized to a discrete choice experiment outlining hypothetical treatment options to prevent antibacterial or antifungal infections. Each respondent was presented 16 choice tasks and was asked to choose between two unlabeled treatment options and an opt-out alternative (no prophylaxis). Results 102 parents and 60 healthcare providers participated. For the antibacterial discrete choice experiment, frequency of administration was significantly associated with utility for parents but not for healthcare providers. Increasing chances of infection, death, side effects and cost were all significantly associated with decreased utility for parents and healthcare providers in both the antibacterial and antifungal discrete choice experiment. Parental willingness-to-pay was higher than healthcare providers for both strategies. Conclusion Chances of infection, death, side effects and costs were all significantly associated with utility. Parents have higher willingness-to-pay for these strategies compared with healthcare providers. This knowledge can help to develop prophylaxis programs.


Biomedical Optics Express | 2012

High-resolution 3D optical microscopy inside the beating zebrafish heart using prospective optical gating

Jonathan M. Taylor; John M. Girkin; Gordon D. Love

3D fluorescence imaging is a fundamental tool in the study of functional and developmental biology, but effective imaging is particularly difficult in moving structures such as the beating heart. We have developed a non-invasive real-time optical gating system that is able to exploit the periodic nature of the motion to acquire high resolution 3D images of the normally-beating zebrafish heart without any unnecessary exposure of the sample to harmful excitation light. In order for the image stack to be artefact-free, it is essential to use a synchronization source that is invariant as the sample is scanned in 3D. We therefore describe a scheme whereby fluorescence image slices are scanned through the sample while a brightfield camera sharing the same objective lens is maintained at a fixed focus, with correction of sample drift also included. This enables us to maintain, throughout an extended 3D volume, the same standard of synchronization we have previously demonstrated in and near a single 2D plane. Thus we are able image the complete beating zebrafish heart exactly as if the heart had been artificially stopped, but sidestepping this undesirable interference with the heart and instead allowing the heart to beat as normal.


PLOS ONE | 2014

Heart on a Plate: Histological and Functional Assessment of Isolated Adult Zebrafish Hearts Maintained in Culture

Sebastian Pieperhoff; Kathryn S. Wilson; James Baily; Kim de Mora; Sana Maqsood; Sharron Vass; Jonathan M. Taylor; Jorge Del-Pozo; Calum A. MacRae; John J. Mullins; Martin A. Denvir

The zebrafish is increasingly used for cardiovascular genetic and functional studies. We present a novel protocol to maintain and monitor whole isolated beating adult zebrafish hearts in culture for long-term experiments. Excised whole adult zebrafish hearts were transferred directly into culture dishes containing optimized L-15 Leibovitz growth medium and maintained for 5 days. Hearts were assessed daily using video-edge analysis of ventricle function using low power microscopy images. High-throughput histology techniques were used to assess changes in myocardial architecture and cell viability. Mean spontaneous Heart rate (HR, min−1) declined significantly between day 0 and day 1 in culture (96.7±19.5 to 45.2±8.2 min−1, mean±SD, p = 0.001), and thereafter declined more slowly to 27.6±7.2 min−1 on day 5. Ventricle wall motion amplitude (WMA) did not change until day 4 in culture (day 0, 46.7±13.0 µm vs day 4, 16.9±1.9 µm, p = 0.08). Contraction velocity (CV) declined between day 0 and day 3 (35.6±14.8 vs 15.2±5.3 µms−1, respectively, p = 0.012) while relaxation velocity (RV) declined quite rapidly (day 0, 72.5±11.9 vs day 1, 29.5±5.8 µms−1, p = 0.03). HR and WMA responded consistently to isoproterenol from day 0 to day 5 in culture while CV and RV showed less consistent responses to beta-agonist. Cellular architecture and cross-striation pattern of cardiomyocytes remained unchanged up to day 3 in culture and thereafter showed significant deterioration with loss of striation pattern, pyknotic nuclei and cell swelling. Apoptotic markers within the myocardium became increasingly frequent by day 3 in culture. Whole adult zebrafish hearts can be maintained in culture-medium for up to 3 days. However, after day-3 there is significant deterioration in ventricle function and heart rate accompanied by significant histological changes consistent with cell death and loss of cardiomyocyte cell integrity. Further studies are needed to assess whether this preparation can be optimised for longer term survival.


Soft Matter | 2011

Nanofluidic networks created and controlled by light

David A. Woods; Christopher D. Mellor; Jonathan M. Taylor; Colin D. Bain; Andrew D. Ward

Nanofluidic networks have been fabricated in an oil-in-water emulsion. Micron-sized oil drops with ultralow interfacial tensions are connected by stable oil threads a few nm across. Lasers are used both to construct the nanofluidic network and to transport the fluid from one drop to another. These networks form a platform for chemistry on the attolitre scale.


Optics Express | 2012

Directed assembly of optically bound matter

Summers; Richard D. Dear; Jonathan M. Taylor; Grant A. D. Ritchie

We present a study of optically bound matter formation in a counter-propagating evanescent field, exploiting total internal reflection on a prism surface. Small ensembles of silica microspheres are assembled in a controlled manner using optical tweezers. The structures and dynamics of the resulting optically bound chains are interpreted using a simulation implementing generalized Lorentz-Mie theory. In particular, we observe enhancement of the scattering force along the propagation direction of the optically bound colloidal chains leading to a microscopic analogue of a driven pendulum which, at least superficially, resembles Newtons cradle.

Collaboration


Dive into the Jonathan M. Taylor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge