Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan Maybaum is active.

Publication


Featured researches published by Jonathan Maybaum.


Cancer Research | 2010

Mechanism of Radiosensitization by the Chk1/2 Inhibitor AZD7762 Involves Abrogation of the G2 Checkpoint and Inhibition of Homologous Recombinational DNA Repair

Meredith A. Morgan; Leslie A. Parsels; Lili Zhao; Joshua D. Parsels; Mary A. Davis; Maria C. Hassan; Sankari Arumugarajah; Linda Hylander-Gans; Deborah Morosini; Diane M. Simeone; Christine E. Canman; Daniel P. Normolle; Sonya Zabludoff; Jonathan Maybaum; Theodore S. Lawrence

The median survival for patients with locally advanced pancreatic cancer treated with gemcitabine and radiation is approximately 1 year. To develop improved treatment, we have combined a Chk1/2-targeted agent, AZD7762, currently in phase I clinical trials, with gemcitabine and ionizing radiation in preclinical pancreatic tumor models. We found that in vitro AZD7762 alone or in combination with gemcitabine significantly sensitized MiaPaCa-2 cells to radiation. AZD7762 inhibited Chk1 autophosphorylation (S296 Chk1), stabilized Cdc25A, and increased ATR/ATM-mediated Chk1 phosphorylation (S345 Chk1). Radiosensitization by AZD7762 was associated with abrogation of the G(2) checkpoint as well as with inhibition of Rad51 focus formation, inhibition of homologous recombination repair, and persistent gamma-H2AX expression. AZD7762 was also a radiation sensitizer in multiple tumor xenograft models. In both MiaPaCa-2- and patient-derived xenografts, AZD7762 significantly prolonged the median time required for tumor volume doubling in response to gemcitabine and radiation. Together, our findings suggest that G(2) checkpoint abrogation and homologous recombination repair inhibition both contribute to sensitization by Chk1 inhibition. Furthermore, they support the clinical use of AZD7762 in combination with gemcitabine and radiation for patients with locally advanced pancreatic cancer.


Molecular Cancer Therapeutics | 2009

Gemcitabine sensitization by checkpoint kinase 1 inhibition correlates with inhibition of a Rad51 DNA damage response in pancreatic cancer cells

Leslie A. Parsels; Meredith A. Morgan; Daria M. Tanska; Joshua D. Parsels; Brian D. Palmer; R. John Booth; William A. Denny; Christine E. Canman; Alan J. Kraker; Theodore S. Lawrence; Jonathan Maybaum

The protein kinase checkpoint kinase 1 (Chk1) has been implicated as a key regulator of cell cycle progression and DNA repair, and inhibitors of Chk1 (e.g., UCN-01 and EXEL-9844) potentiate the cytotoxic actions of chemotherapeutic drugs in tumor cells. We have examined the ability of PD-321852, a small-molecule Chk1 inhibitor, to potentiate gemcitabine-induced clonogenic death in a panel of pancreatic cancer cell lines and evaluated the relationship between endpoints associated with Chk1 inhibition and chemosensitization. Gemcitabine chemosensitization by minimally toxic concentrations of PD-321852 ranged from minimal (<3-fold change in survival) in Panc1 cells to >30-fold in MiaPaCa2 cells. PD-321852 inhibited Chk1 in all cell lines as evidenced by stabilization of Cdc25A; in combination with gemcitabine, a synergistic loss of Chk1 protein was observed in the more sensitized cell lines. Gemcitabine chemosensitization, however, did not correlate with abrogation of the S-M or G2-M checkpoint; PD-321852 did not induce premature mitotic entry in gemcitabine-treated BxPC3 or M-Panc96 cells, which were sensitized to gemcitabine 6.2- and 4.6-fold, respectively. In the more sensitized cells lines, PD-321852 not only inhibited gemcitabine-induced Rad51 focus formation and the recovery from gemcitabine-induced replication stress, as evidenced by persistence of γ-H2AX, but also depleted these cells of Rad51 protein. Our data suggest the inhibition of this Chk1-mediated Rad51 response to gemcitabine-induced replication stress is an important factor in determining gemcitabine chemosensitization by Chk1 inhibition in pancreatic cancer cells. [Mol Cancer Ther 2009;8(1):45–54]


Clinical Cancer Research | 2008

The Combination of Epidermal Growth Factor Receptor Inhibitors with Gemcitabine and Radiation in Pancreatic Cancer

Meredith A. Morgan; Leslie A. Parsels; Laura E. Kollar; Daniel P. Normolle; Jonathan Maybaum; Theodore S. Lawrence

Purpose: Gemcitabine-radiotherapy is a standard treatment for locally advanced pancreatic cancer. Clinical data have shown that gemcitabine plus erlotinib is superior to gemcitabine alone for advanced pancreatic cancer. Therefore, we investigated the effects of the combination of epidermal growth factor receptor inhibitors with gemcitabine and radiation on a pancreatic cancer model. Experimental Design: EGFR signaling was analyzed by measuring phosphorylated EGFR (pEGFR(Y845), (Y1173)) and AKT (pAKT(S473)) protein levels in pancreatic cancer cell lines and tumors. The effects of scheduling on gemcitabine-mediated cytotoxicity and radiosensitization combined with erlotinib were determined by clonogenic survival. In vivo, the effects of cetuximab or erlotinib in combination with gemcitabine-radiation on the growth of BxPC-3 tumor xenografts were measured. Results: We found in vitro that gemcitabine induced phosphorylation of EGFR at Y845 and Y1173 that was blocked by erlotinib. Treatment of BxPC-3 cells with gemcitabine before erlotinib enhanced gemcitabine-mediated cytotoxicity without abrogating radiosensitization. In vivo, cetuximab or erlotinib in combination with gemcitabine-radiation inhibited growth compared with gemcitabine-radiation (time to tumor doubling: gemcitabine + radiation, 19 ± 3 days; cetuximab + gemcitabine + radiation, 30 ± 3 days; P < 0.05, erlotinib + gemcitabine + radiation 28 ± 3 days; P < 0.1). Cetuximab or erlotinib in combination with gemcitabine-radiation resulted in significant inhibition of pEGFR(Y1173) and pAKT(S473) early in treatment, and pEGFR(Y845), pEGFR(Y1173), and pAKT(S473) by the end of treatment. This study shows a novel difference pEGFR(Y845) and pEGFR(Y1173) in response to EGFR inhibition. Conclusions: These results show that the EGFR inhibitors cetuximab and erlotinib increase the efficacy of gemcitabine-radiation. This work supports the integration of EGFR inhibitors with gemcitabine-radiation in clinical trials for pancreatic cancer.


Biochemical Pharmacology | 1986

Concurrent unilateral chromatid damage and DNA strand breakage in response to 6-thioguanine treatment

Craig R. Fairchild; Jonathan Maybaum; Katherine A. Kennedy

The delayed cytotoxicity of 6-thioguanine (TG) may relate to the arrest of cells in G2 upon completion of one cell cycle after drug exposure. In Chinese hamster ovary (CHO) cells, both the unilateral chromatid damage in G2 chromosomes, determined by induction of premature condensed chromosome condensation [Maybaum and Mandel, Cancer Res. 43, 3852 (1983)], and incorporation of TG into DNA resulting in DNA strand breakage [Christie et al., Cancer Res. 44, 3665 (1984)] were correlated with cytotoxicity. We have studied the correlation between strand breakage and unilateral chromatid damage in L1210 cells. DNA breaks were detected only when cells were treated with TG (0.25 microM) for one cell cycle time (12 hr) followed by 12 hr in drug-free medium containing [3H]thymidine (TdR) to label the DNA. After simultaneous incubation of cells with drug and label during the first or second 12-hr period, strand breaks were not found. Strand breaks increased with dose, which correlated with greater cytotoxicity (0.01 to 0.25 microM). Treatment of cells with 0.25 microM TG for 12 hr, and transfer to drug-free medium for 12 hr prior to making prematurely condensed chromosomes (PCC), resulted in unilateral chromatid damage. Prominent curving of G2 chromosomes with gapping and diffuse staining of one of the sister chromatids occurred. The 4-fold increase in the percentage of cells in G2 compared with control cells suggested G2 arrest. When cells were treated with TG for 12 hr and PCC made immediately, neither the arrest of cells in G2 nor unilateral chromatid damage was observed. These data suggest that strand breaks and unilateral chromatid damage occur in the second cell cycle after TG exposure and that this damage may be important in TG-delayed cytotoxicity.


International Journal of Radiation Oncology Biology Physics | 1994

Dependence of 5-fluorouracil-mediated radiosensitization on DNA-directed effects

Theodore S. Lawrence; Mary A. Davis; Jonathan Maybaum

PURPOSE Although 5-fluorouracil (FUra) has been demonstrated to be a radiation sensitizer both in the laboratory and the clinic, it is not known whether radiosensitization results primarily from FUras DNA or RNA-directed effects. METHODS AND MATERIALS We studied the radiosensitizing effects of FUra +/- thymidine (dThd)) on HT29 human colon cancer cells, which are relatively sensitive to the DNA-directed action of FUra, in comparison to SW620 and HuTu80 human colon cancer cells, which are relatively resistant to FUras DNA-directed effects. We hypothesized that if FUra were acting chiefly through DNA dependent mechanisms, HT29 cells would (a) show greater radiosensitization than SW620 and HuTu80 cells under the same conditions of exposure; and (b) demonstrate selective reversal of radiation sensitivity (compared to cytotoxicity) in the presence of FUra + dThd, compared to FUra alone. RESULTS We found that the enhancement ratio produced by a 24 h exposure to 10 microM FUra was significantly greater in HT29 cells compared to SW620 and HuTu80 cells (enhancement ratios of 2.1 +/- 0.1; 1.1 +/- 0.1, and 1.3 +/- 0.1, respectively). Furthermore, in HT29 cells, dThd blocked FUra-mediated radiosensitization to a greater extent than FUra-mediated cytotoxicity. Thus, our hypotheses were confirmed. CONCLUSION These findings support the concept that the manipulation of FUras DNA-dependent actions, for example, through modulators of thymidylate synthase (TS) activity, may increase radiosensitization in clinical trials in the treatment of gastrointestinal cancers. However, since resistance to the DNA-directed effects of fluoropyrimidines can result from mechanisms unrelated to TS inhibition, additional strategies will be required to potentiate fluoropyrimidine-mediated radiosensitization.


International Journal of Radiation Oncology Biology Physics | 1990

THE DEPENDENCE OF HALOGENATED PYRIMIDINE INCORPORATION AND RADIOSENSITIZATION ON THE DURATION OF DRUG EXPOSURE

Theodore S. Lawrence; Mary A. Davis; Jonathan Maybaum; Philip L. Stetson; William D. Ensminger

The influence of the duration of exposure to the halogenated pyrimidines iododeoxyuridine (IdUrd) and bromodeoxyuridine (BrdUrd) on incorporation into DNA and the resulting radiosensitization was studied in cultured human colon cancer cells. Cells were incubated with either 10 microM BrdUrd or IdUrd for periods up to 7 days. They were also assessed for up to 4 days after removal of drug from the medium. Replacement of thymidine by fraudulent bases was measured using a sensitive gas chromatographic, mass spectrometric (GC/MS) assay. Incorporation of BrdUrd and IdUrd plateaued at 35% and 30%, respectively, after 4 days of exposure. Prolonging the time of exposure to 7 days increased cytotoxicity without affecting either incorporation or radiosensitization. Incorporation remained constant for 1-2 days after removal of drug from the medium. Radiosensitization was linearly related to incorporation throughout the range of conditions assessed. These data suggest that it may be possible to develop a predictive assay for radiosensitization based on measurements of halogenated pyrimidine incorporation in a tumor biopsy specimen. They also suggest that a clinical approach based on repeated short exposures to halogenated pyrimidines may present certain advantages over the current practice of prolonged continuous exposure. A Phase I/II trial using IdUrd and external beam irradiation for the treatment of patients with poor prognosis soft tissue sarcomas has been initiated based on this concept.


Clinical Cancer Research | 2011

Assessment of Chk1 phosphorylation as a pharmacodynamic biomarker of Chk1 inhibition

Leslie A. Parsels; Yushen Qian; Daria M. Tanska; Marisa Gross; Lili Zhao; Maria C. Hassan; Sankari Arumugarajah; Joshua D. Parsels; Linda Hylander-Gans; Diane M. Simeone; Deborah Morosini; Jeffrey L. Brown; Sonya D. Zabludoff; Jonathan Maybaum; Theodore S. Lawrence; Meredith A. Morgan

Purpose: Chk1 inhibitors, such as AZD7762, are in clinical development in combination with cytotoxic agents for the treatment of solid tumors, including pancreatic cancers. To maximize the likelihood of their clinical success, it is essential to optimize drug scheduling as well as pharmacodynamic biomarkers in preclinical models. Experimental Design: We tested multiple schedules of administration of gemcitabine and AZD7762 on the survival of pancreatic cancer cells. Potential pharmacodynamic biomarkers including pChk1, pChk2, pHistone H3, and caspase-3 were evaluated in vitro, followed by assessment of promising candidate biomarkers in vivo. We then went on to determine the contributions of PP2A and DNA damage to the mechanism(s) of induction of the identified biomarker, pS345 Chk1. Results: AZD7762 given during and after or after gemcitabine administration produced maximum chemosensitization. In vivo, AZD7762 significantly inhibited the growth of pancreatic tumor xenografts in response to gemcitabine. Of the biomarkers assessed, pS345 Chk1 was most consistently increased in response to gemcitabine and AZD7762 in tumors and normal tissues (hair follicles). pS345 Chk1 induction in response to gemcitabine and AZD7762 occurred in the presence of PP2A inhibition and in association with elevated γH2AX, suggesting that DNA damage is an underlying mechanism. Conclusions: AZD7762 sensitizes pancreatic cancer cells and tumors to gemcitabine in association with induction of pS345 Chk1. Together these data support the clinical investigation of AZD7762 with gemcitabine in pancreatic cancer under a dosing schedule in which gemcitabine is administered concurrent with or before AZD7762 and in conjunction with skin biopsies to measure pS345 Chk1. Clin Cancer Res; 17(11); 3706–15. ©2011 AACR.


Clinical Cancer Research | 2013

Inhibition of protein phosphatase 2A radiosensitizes pancreatic cancers by modulating CDC25C/CDK1 and homologous recombination repair

Dongping Wei; Leslie A. Parsels; David Karnak; Mary A. Davis; Joshua D. Parsels; Amanda C. Marsh; Lili Zhao; Jonathan Maybaum; Theodore S. Lawrence; Yi Sun; Meredith A. Morgan

Purpose: To identify targets whose inhibition may enhance the efficacy of chemoradiation in pancreatic cancer and thus improve survival, we conducted an siRNA library screen in pancreatic cancer cells. We investigated PPP2R1A, a scaffolding subunit of protein phosphatase 2A (PP2A) as a lead radiosensitizing target. Experimental Design: We determined the effect of PP2A inhibition by genetic (PPP2R1A siRNA) and pharmacologic (LB100, a small molecule entering phase I clinical trials) approaches on radiosensitization of Panc-1 and MiaPaCa-2 pancreatic cancer cells both in vitro and in vivo. Results: PPP2R1A depletion by siRNA radiosensitized Panc-1 and MiaPaCa-2 cells, with radiation enhancement ratios of 1.4 (P < 0.05). Likewise, LB100 produced similar radiosensitization in pancreatic cancer cells, but minimal radiosensitization in normal small intestinal cells. Mechanistically, PPP2R1A siRNA or LB100 caused aberrant CDK1 activation, likely resulting from accumulation of the active forms of PLK1 (pPLK1 T210) and CDC25C (pCDC25C T130). Furthermore, LB100 inhibited radiation-induced Rad51 focus formation and homologous recombination repair (HRR), ultimately leading to persistent radiation-induced DNA damage, as reflected by γ-H2AX expression. Finally, we identified CDC25C as a key PP2A substrate involved in LB100-mediated radiosensitization as depletion of CDC25C partially reversed LB100-mediated radiosensitization. In a mouse xenograft model of human pancreatic cancer, LB100 produced significant radiosensitization with minimal weight loss. Conclusions: Collectively, our data show that PP2A inhibition radiosensitizes pancreatic cancer both in vitro and in vivo via activation of CDC25C/CDK1 and inhibition of HRR, and provide proof-of-concept evidence that PP2A is a promising target for the improvement of local therapy in pancreatic cancer. Clin Cancer Res; 19(16); 4422–32. ©2013 AACR.


Cell Cycle | 2011

Selective radiosensitization of p53 mutant pancreatic cancer cells by combined inhibition of Chk1 and PARP1

Sean M. Vance; Erqi Liu; Lili Zhao; Joshua D. Parsels; Leslie A. Parsels; Jeffrey L. Brown; Jonathan Maybaum; Theodore S. Lawrence; Meredith A. Morgan

We have recently shown that inhibition of HRR (homologous recombination repair) by Chk1 (checkpoint kinase 1) inhibition radiosensitizes pancreatic cancer cells and others have demonstrated that Chk1 inhibition selectively sensitizes p53 mutant tumor cells. Furthermore, PARP1 [poly (ADP-ribose) polymerase-1] inhibitors dramatically radiosensitize cells with DNA double strand break repair defects. Thus, we hypothesized that inhibition of HRR (mediated by Chk1 via AZD7762) and PARP1 [via olaparib (AZD2281)] would selectively sensitize p53 mutant pancreatic cancer cells to radiation. We also used 2 isogenic p53 cell models to assess the role of p53 status in cancer cells and intestinal epithelial cells to assess overall cancer specificity. DNA damage response and repair were assessed by flow cytometry, γH2AX, and an HRR reporter assay. We found that the combination of AZD7762 and olaparib produced significant radiosensitization in p53 mutant pancreatic cancer cells and in all of the isogenic cancer cell lines. The magnitude of radiosensitization by AZD7762 and olaparib was greater in p53 mutant cells compared with p53 wild type cells. Importantly, normal intestinal epithelial cells were not radiosensitized. The combination of AZD7762 and olaparib caused G2 checkpoint abrogation, inhibition of HRR, and persistent DNA damage responses. These findings demonstrate that the combination of Chk1 and PARP1 inhibition selectively radiosensitizes p53 mutant pancreatic cancer cells. Furthermore, these studies suggest that inhibition of HRR by Chk1 inhibitors may be a useful strategy for selectively inducing a BRCA1/2 ‘deficient-like’ phenotype in p53 mutant tumor cells, while sparing normal tissue.


Clinical Cancer Research | 2013

Sensitization of pancreatic cancer to chemoradiation by the Chk1 inhibitor, MK8776

Carl G. Engelke; Leslie A. Parsels; Yushen Qian; Qiang Zhang; David Karnak; Jordan R. Robertson; Daria M. Tanska; Dongping Wei; Mary A. Davis; Joshua D. Parsels; Lili Zhao; Joel K. Greenson; Theodore S. Lawrence; Jonathan Maybaum; Meredith A. Morgan

Purpose: The combination of radiation with chemotherapy is the most effective therapy for unresectable pancreatic cancer. To improve upon this regimen, we combined the selective Checkpoint kinase 1 (Chk1) inhibitor MK8776 with gemcitabine-based chemoradiation in preclinical pancreatic cancer models. Experimental Design: We tested the ability of MK8776 to sensitize to gemcitabine-radiation in homologous recombination repair (HRR)–proficient and –deficient pancreatic cancer cells and assessed Rad51 focus formation. In vivo, we investigated the efficacy, tumor cell selectivity, and pharmacodynamic biomarkers of sensitization by MK8776. Results: We found that MK8776 significantly sensitized HRR-proficient (AsPC-1, MiaPaCa-2, BxPC-3) but not -deficient (Capan-1) pancreatic cancer cells to gemcitabine-radiation and inhibited Rad51 focus formation in HRR-proficient cells. In vivo, MiaPaCa-2 xenografts were significantly sensitized to gemcitabine-radiation by MK8776 without significant weight loss or observable toxicity in the small intestine, the dose-limiting organ for chemoradiation therapy in pancreatic cancer. We also assessed pChk1 (S345), a pharmacodynamic biomarker of DNA damage in response to Chk1 inhibition in both tumor and small intestine and found that MK8776 combined with gemcitabine or gemcitabine-radiation produced a significantly greater increase in pChk1 (S345) in tumor relative to small intestine, suggesting greater DNA damage in tumor than in normal tissue. Furthermore, we demonstrated the utility of an ex vivo platform for assessment of pharmacodynamic biomarkers of Chk1 inhibition in pancreatic cancer. Conclusions: Together, our results suggest that MK8776 selectively sensitizes HRR-proficient pancreatic cancer cells and xenografts to gemcitabine-radiation and support the clinical investigation of MK8776 in combination with gemcitabine-radiation in locally advanced pancreatic cancer. Clin Cancer Res; 19(16); 4412–21. ©2013 AACR.

Collaboration


Dive into the Jonathan Maybaum's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lili Zhao

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge