Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joshua D. Parsels is active.

Publication


Featured researches published by Joshua D. Parsels.


Cancer Research | 2010

Mechanism of Radiosensitization by the Chk1/2 Inhibitor AZD7762 Involves Abrogation of the G2 Checkpoint and Inhibition of Homologous Recombinational DNA Repair

Meredith A. Morgan; Leslie A. Parsels; Lili Zhao; Joshua D. Parsels; Mary A. Davis; Maria C. Hassan; Sankari Arumugarajah; Linda Hylander-Gans; Deborah Morosini; Diane M. Simeone; Christine E. Canman; Daniel P. Normolle; Sonya Zabludoff; Jonathan Maybaum; Theodore S. Lawrence

The median survival for patients with locally advanced pancreatic cancer treated with gemcitabine and radiation is approximately 1 year. To develop improved treatment, we have combined a Chk1/2-targeted agent, AZD7762, currently in phase I clinical trials, with gemcitabine and ionizing radiation in preclinical pancreatic tumor models. We found that in vitro AZD7762 alone or in combination with gemcitabine significantly sensitized MiaPaCa-2 cells to radiation. AZD7762 inhibited Chk1 autophosphorylation (S296 Chk1), stabilized Cdc25A, and increased ATR/ATM-mediated Chk1 phosphorylation (S345 Chk1). Radiosensitization by AZD7762 was associated with abrogation of the G(2) checkpoint as well as with inhibition of Rad51 focus formation, inhibition of homologous recombination repair, and persistent gamma-H2AX expression. AZD7762 was also a radiation sensitizer in multiple tumor xenograft models. In both MiaPaCa-2- and patient-derived xenografts, AZD7762 significantly prolonged the median time required for tumor volume doubling in response to gemcitabine and radiation. Together, our findings suggest that G(2) checkpoint abrogation and homologous recombination repair inhibition both contribute to sensitization by Chk1 inhibition. Furthermore, they support the clinical use of AZD7762 in combination with gemcitabine and radiation for patients with locally advanced pancreatic cancer.


Molecular Cancer Therapeutics | 2009

Gemcitabine sensitization by checkpoint kinase 1 inhibition correlates with inhibition of a Rad51 DNA damage response in pancreatic cancer cells

Leslie A. Parsels; Meredith A. Morgan; Daria M. Tanska; Joshua D. Parsels; Brian D. Palmer; R. John Booth; William A. Denny; Christine E. Canman; Alan J. Kraker; Theodore S. Lawrence; Jonathan Maybaum

The protein kinase checkpoint kinase 1 (Chk1) has been implicated as a key regulator of cell cycle progression and DNA repair, and inhibitors of Chk1 (e.g., UCN-01 and EXEL-9844) potentiate the cytotoxic actions of chemotherapeutic drugs in tumor cells. We have examined the ability of PD-321852, a small-molecule Chk1 inhibitor, to potentiate gemcitabine-induced clonogenic death in a panel of pancreatic cancer cell lines and evaluated the relationship between endpoints associated with Chk1 inhibition and chemosensitization. Gemcitabine chemosensitization by minimally toxic concentrations of PD-321852 ranged from minimal (<3-fold change in survival) in Panc1 cells to >30-fold in MiaPaCa2 cells. PD-321852 inhibited Chk1 in all cell lines as evidenced by stabilization of Cdc25A; in combination with gemcitabine, a synergistic loss of Chk1 protein was observed in the more sensitized cell lines. Gemcitabine chemosensitization, however, did not correlate with abrogation of the S-M or G2-M checkpoint; PD-321852 did not induce premature mitotic entry in gemcitabine-treated BxPC3 or M-Panc96 cells, which were sensitized to gemcitabine 6.2- and 4.6-fold, respectively. In the more sensitized cells lines, PD-321852 not only inhibited gemcitabine-induced Rad51 focus formation and the recovery from gemcitabine-induced replication stress, as evidenced by persistence of γ-H2AX, but also depleted these cells of Rad51 protein. Our data suggest the inhibition of this Chk1-mediated Rad51 response to gemcitabine-induced replication stress is an important factor in determining gemcitabine chemosensitization by Chk1 inhibition in pancreatic cancer cells. [Mol Cancer Ther 2009;8(1):45–54]


Clinical Cancer Research | 2011

Assessment of Chk1 phosphorylation as a pharmacodynamic biomarker of Chk1 inhibition

Leslie A. Parsels; Yushen Qian; Daria M. Tanska; Marisa Gross; Lili Zhao; Maria C. Hassan; Sankari Arumugarajah; Joshua D. Parsels; Linda Hylander-Gans; Diane M. Simeone; Deborah Morosini; Jeffrey L. Brown; Sonya D. Zabludoff; Jonathan Maybaum; Theodore S. Lawrence; Meredith A. Morgan

Purpose: Chk1 inhibitors, such as AZD7762, are in clinical development in combination with cytotoxic agents for the treatment of solid tumors, including pancreatic cancers. To maximize the likelihood of their clinical success, it is essential to optimize drug scheduling as well as pharmacodynamic biomarkers in preclinical models. Experimental Design: We tested multiple schedules of administration of gemcitabine and AZD7762 on the survival of pancreatic cancer cells. Potential pharmacodynamic biomarkers including pChk1, pChk2, pHistone H3, and caspase-3 were evaluated in vitro, followed by assessment of promising candidate biomarkers in vivo. We then went on to determine the contributions of PP2A and DNA damage to the mechanism(s) of induction of the identified biomarker, pS345 Chk1. Results: AZD7762 given during and after or after gemcitabine administration produced maximum chemosensitization. In vivo, AZD7762 significantly inhibited the growth of pancreatic tumor xenografts in response to gemcitabine. Of the biomarkers assessed, pS345 Chk1 was most consistently increased in response to gemcitabine and AZD7762 in tumors and normal tissues (hair follicles). pS345 Chk1 induction in response to gemcitabine and AZD7762 occurred in the presence of PP2A inhibition and in association with elevated γH2AX, suggesting that DNA damage is an underlying mechanism. Conclusions: AZD7762 sensitizes pancreatic cancer cells and tumors to gemcitabine in association with induction of pS345 Chk1. Together these data support the clinical investigation of AZD7762 with gemcitabine in pancreatic cancer under a dosing schedule in which gemcitabine is administered concurrent with or before AZD7762 and in conjunction with skin biopsies to measure pS345 Chk1. Clin Cancer Res; 17(11); 3706–15. ©2011 AACR.


Clinical Cancer Research | 2013

Inhibition of protein phosphatase 2A radiosensitizes pancreatic cancers by modulating CDC25C/CDK1 and homologous recombination repair

Dongping Wei; Leslie A. Parsels; David Karnak; Mary A. Davis; Joshua D. Parsels; Amanda C. Marsh; Lili Zhao; Jonathan Maybaum; Theodore S. Lawrence; Yi Sun; Meredith A. Morgan

Purpose: To identify targets whose inhibition may enhance the efficacy of chemoradiation in pancreatic cancer and thus improve survival, we conducted an siRNA library screen in pancreatic cancer cells. We investigated PPP2R1A, a scaffolding subunit of protein phosphatase 2A (PP2A) as a lead radiosensitizing target. Experimental Design: We determined the effect of PP2A inhibition by genetic (PPP2R1A siRNA) and pharmacologic (LB100, a small molecule entering phase I clinical trials) approaches on radiosensitization of Panc-1 and MiaPaCa-2 pancreatic cancer cells both in vitro and in vivo. Results: PPP2R1A depletion by siRNA radiosensitized Panc-1 and MiaPaCa-2 cells, with radiation enhancement ratios of 1.4 (P < 0.05). Likewise, LB100 produced similar radiosensitization in pancreatic cancer cells, but minimal radiosensitization in normal small intestinal cells. Mechanistically, PPP2R1A siRNA or LB100 caused aberrant CDK1 activation, likely resulting from accumulation of the active forms of PLK1 (pPLK1 T210) and CDC25C (pCDC25C T130). Furthermore, LB100 inhibited radiation-induced Rad51 focus formation and homologous recombination repair (HRR), ultimately leading to persistent radiation-induced DNA damage, as reflected by γ-H2AX expression. Finally, we identified CDC25C as a key PP2A substrate involved in LB100-mediated radiosensitization as depletion of CDC25C partially reversed LB100-mediated radiosensitization. In a mouse xenograft model of human pancreatic cancer, LB100 produced significant radiosensitization with minimal weight loss. Conclusions: Collectively, our data show that PP2A inhibition radiosensitizes pancreatic cancer both in vitro and in vivo via activation of CDC25C/CDK1 and inhibition of HRR, and provide proof-of-concept evidence that PP2A is a promising target for the improvement of local therapy in pancreatic cancer. Clin Cancer Res; 19(16); 4422–32. ©2013 AACR.


Cell Cycle | 2011

Selective radiosensitization of p53 mutant pancreatic cancer cells by combined inhibition of Chk1 and PARP1

Sean M. Vance; Erqi Liu; Lili Zhao; Joshua D. Parsels; Leslie A. Parsels; Jeffrey L. Brown; Jonathan Maybaum; Theodore S. Lawrence; Meredith A. Morgan

We have recently shown that inhibition of HRR (homologous recombination repair) by Chk1 (checkpoint kinase 1) inhibition radiosensitizes pancreatic cancer cells and others have demonstrated that Chk1 inhibition selectively sensitizes p53 mutant tumor cells. Furthermore, PARP1 [poly (ADP-ribose) polymerase-1] inhibitors dramatically radiosensitize cells with DNA double strand break repair defects. Thus, we hypothesized that inhibition of HRR (mediated by Chk1 via AZD7762) and PARP1 [via olaparib (AZD2281)] would selectively sensitize p53 mutant pancreatic cancer cells to radiation. We also used 2 isogenic p53 cell models to assess the role of p53 status in cancer cells and intestinal epithelial cells to assess overall cancer specificity. DNA damage response and repair were assessed by flow cytometry, γH2AX, and an HRR reporter assay. We found that the combination of AZD7762 and olaparib produced significant radiosensitization in p53 mutant pancreatic cancer cells and in all of the isogenic cancer cell lines. The magnitude of radiosensitization by AZD7762 and olaparib was greater in p53 mutant cells compared with p53 wild type cells. Importantly, normal intestinal epithelial cells were not radiosensitized. The combination of AZD7762 and olaparib caused G2 checkpoint abrogation, inhibition of HRR, and persistent DNA damage responses. These findings demonstrate that the combination of Chk1 and PARP1 inhibition selectively radiosensitizes p53 mutant pancreatic cancer cells. Furthermore, these studies suggest that inhibition of HRR by Chk1 inhibitors may be a useful strategy for selectively inducing a BRCA1/2 ‘deficient-like’ phenotype in p53 mutant tumor cells, while sparing normal tissue.


Clinical Cancer Research | 2013

Sensitization of pancreatic cancer to chemoradiation by the Chk1 inhibitor, MK8776

Carl G. Engelke; Leslie A. Parsels; Yushen Qian; Qiang Zhang; David Karnak; Jordan R. Robertson; Daria M. Tanska; Dongping Wei; Mary A. Davis; Joshua D. Parsels; Lili Zhao; Joel K. Greenson; Theodore S. Lawrence; Jonathan Maybaum; Meredith A. Morgan

Purpose: The combination of radiation with chemotherapy is the most effective therapy for unresectable pancreatic cancer. To improve upon this regimen, we combined the selective Checkpoint kinase 1 (Chk1) inhibitor MK8776 with gemcitabine-based chemoradiation in preclinical pancreatic cancer models. Experimental Design: We tested the ability of MK8776 to sensitize to gemcitabine-radiation in homologous recombination repair (HRR)–proficient and –deficient pancreatic cancer cells and assessed Rad51 focus formation. In vivo, we investigated the efficacy, tumor cell selectivity, and pharmacodynamic biomarkers of sensitization by MK8776. Results: We found that MK8776 significantly sensitized HRR-proficient (AsPC-1, MiaPaCa-2, BxPC-3) but not -deficient (Capan-1) pancreatic cancer cells to gemcitabine-radiation and inhibited Rad51 focus formation in HRR-proficient cells. In vivo, MiaPaCa-2 xenografts were significantly sensitized to gemcitabine-radiation by MK8776 without significant weight loss or observable toxicity in the small intestine, the dose-limiting organ for chemoradiation therapy in pancreatic cancer. We also assessed pChk1 (S345), a pharmacodynamic biomarker of DNA damage in response to Chk1 inhibition in both tumor and small intestine and found that MK8776 combined with gemcitabine or gemcitabine-radiation produced a significantly greater increase in pChk1 (S345) in tumor relative to small intestine, suggesting greater DNA damage in tumor than in normal tissue. Furthermore, we demonstrated the utility of an ex vivo platform for assessment of pharmacodynamic biomarkers of Chk1 inhibition in pancreatic cancer. Conclusions: Together, our results suggest that MK8776 selectively sensitizes HRR-proficient pancreatic cancer cells and xenografts to gemcitabine-radiation and support the clinical investigation of MK8776 in combination with gemcitabine-radiation in locally advanced pancreatic cancer. Clin Cancer Res; 19(16); 4412–21. ©2013 AACR.


Cell Cycle | 2006

The relationship of premature mitosis to cytotoxicity in response to checkpoint abrogation and antimetabolite treatment

Meredith A. Morgan; Leslie A. Parsels; Joshua D. Parsels; Theodore S. Lawrence; Jonathan Maybaum

Inhibition of one or both of the checkpoint kinases, Chk1 and Chk2, has been proposed as a strategy for improving the efficacy of cytotoxic chemotherapeutic agents in tumor cells. Previous studies have demonstrated that Chk1 inhibition potentiates the cytotoxicity of chemotherapeutic agents in a variety of systems. We designed a study to test whether the simultaneous depletion of Chk1 and Chk2 would sensitize cells to FdUrd- and gemcitabine-induced cytotoxicity to a greater extent than Chk1 depletion alone and to determine the contribution of premature mitosis to cytotoxicity. We found that RNAi-mediated Chk1 depletion enhanced FdUrd- and gemcitabine-mediated cytotoxicity (2- to 3-fold) in Panc-1 and SW620 cells. Furthermore enhanced cytotoxicity by Chk1 depletion was accompanied by inhibition of FdUrd- or gemcitabine-induced Cdc25A degradation and induction of premature mitotic entry in drug-treated cells. The simultaneous depletion of Chk1 and Chk2 inhibited Cdc25A degradation, induced premature mitotic entry and enhanced cytotoxicity in response to FdUrd and gemcitabine to a similar extent as Chk1 depletion alone. These results imply that Chk2 inhibition has no immediate consequence on survival or cell cycle progression in tumor cells treated with antimetabolites, regardless of their Chk1 status. In addition, these results suggest that premature mitotic entry is a qualitative marker for enhanced antimetabolite-induced cytotoxicity by Chk1 inhibition. The finding that Chk1 inhibition significantly enhanced antimetabolite-induced cytotoxicity supports further investigation and the development of more specific Chk1 inhibitors for use in the clinic.


Cancer Chemotherapy and Pharmacology | 1998

Mechanism and pharmacological specificity of dUTPase-mediated protection from DNA damage and cytotoxicity in human tumor cells

Leslie A. Parsels; Joshua D. Parsels; Lois M. Wagner; Tania L. Loney; Eric H. Radany; Jonathan Maybaum

Purpose: We have reported previously that the expression of E. coli dUTPase (dutE) can protect HT29 cells from 5-fluorodeoxyuridine (FdUrd)-induced DNA fragmentation and cytotoxicity. In the study reported here, we further characterized the ability of dutE expression in one HT29 clone, dutE7, to alter the effects of treatment with FdUrd and other thymidylate synthase (TS) inhibitors. In addition, we developed two HuTu80 dutE-expressing clones using a pLNCX-dutE retroviral construct and tested their sensitivity to FdUrd-induced DNA fragmentation and cytotoxicity. Methods: Both a dutE retroviral expression system and a dutE antibody were developed to facilitate the generation and screening of dutE-expressing clones. HT29 and HuTu80 clones expressing dutE were tested for drug-induced DNA damage with either alkaline elution or pulsed field gel electrophoresis and drug-induced loss of clonogenicity. Results: Following a 24-h treatment with 100 μM CB3717 or 500 nM methotrexate (MTX), dutE7 cells were significantly less sensitive to drug-induced loss of clonogenicity than con3 cells. DutE7 cells were also resistant to CB3717-induced DNA fragmentation at 24 h. However, following a 48-h treatment with CB3717 or MTX there was no difference in survival between con3 and dutE7 cells, even though DNA damage was still greatly attenuated in the dutE7 cell line. In addition, expression of dutE in two HuTu80 clones, 80  C and 80  K, did not protect these cells from FdUrd-induced DNA damage or cytotoxicity. Conclusions: We conclude that the role of uracil misincorporation and subsequent DNA damage in cytotoxicity induced by TS inhibitors, in HT29 cells, is time dependent, and that cytotoxicity caused by long-term exposure to these drugs is largely independent of resultant DNA damage, in this cell line. The inability of dutE to protect HuTu80 cells from FdUrd further suggests that the significance of uracil misincorporation resulting from TS inhibition varies among cell lines.


Cancer Research | 2004

5-Fluoro-2′-Deoxyuridine-Induced cdc25A Accumulation Correlates with Premature Mitotic Entry and Clonogenic Death in Human Colon Cancer Cells

Leslie A. Parsels; Joshua D. Parsels; Daniel Chung Ho Tai; Daniel J. Coughlin; Jonathan Maybaum

The ability to inappropriately progress through S phase during drug treatment is a key determinant of tumor cell sensitivity to thymidylate synthase inhibitors such as 5-fluoro-2′-deoxyuridine (FdUrd). Previous studies suggest that SW620 cells, which are relatively resistant to FdUrd, have an intact early S-phase checkpoint that protects against FdUrd-induced DNA damage and cytotoxicity and that this checkpoint is defective in the relatively sensitive HT29 cells, which continue to progress through S phase during drug treatment. To test this hypothesis, we examined the expression and activation of known S-phase checkpoint mediators in FdUrd-treated SW620 and HT29 cells. FdUrd induced degradation of cdc25A in SW620, but not HT29 cells, in a manner that correlated with the previously described drug-induced S-phase arrest. This difference, however, could not be attributed to differences in either chk1 activation, which was similar in both cell lines, or chk2 activation, which only occurred in HT29 cells and correlated with uracil misincorporation/misrepair-induced DNA double-stranded breaks. These observations suggest that although FdUrd-induced S-phase arrest and associated cdc25A degradation are impaired in HT29 cells, signaling by ATM/ATR is intact upstream of chk1 and chk2. Finally, FdUrd induced premature mitotic entry, a phenomenon associated with deregulated cdc25A expression, in HT29 but not SW620 cells. Blocking cdc25A expression in HT29 cells with small interfering RNA attenuated FdUrd-induced premature mitotic entry, suggesting that progression of HT29 cells through S phase during drug treatment results in part from the inability of these cells to degrade cdc25A in response to FdUrd-induced DNA damage.


Neoplasia | 2015

Sensitization of Pancreatic Cancers to Gemcitabine Chemoradiation by WEE1 Kinase Inhibition Depends on Homologous Recombination Repair

Tasneem Kausar; Jason S. Schreiber; David Karnak; Leslie A. Parsels; Joshua D. Parsels; Mary A. Davis; Lili Zhao; Jonathan Maybaum; Theodore S. Lawrence; Meredith A. Morgan

To improve the efficacy of chemoradiation therapy for locally advanced pancreatic cancer and begin to establish patient selection criteria, we investigated the combination of the WEE1 inhibitor AZD1775 with gemcitabine-radiation in homologous recombination (HR) repair proficient and deficient pancreatic cancers. Sensitization to gemcitabine-radiation by AZD1775 was assessed in pancreatic cancer cells by clonogenic survival and in patient-derived xenografts by tumor growth. The contributions of HR repair inhibition and G2 checkpoint abrogation to sensitization were assessed by γH2AX, BRCA2 manipulation, and RAD51 focus formation and pHistone H3 flow cytometry, respectively. We found that AZD1775 sensitized to gemcitabine-radiation in BRCA2 wild-type but not BRCA2 mutant pancreatic cancer cells. In all cells, AZD1775 caused inhibition of CDK1 phosphorylation and G2 checkpoint abrogation. However, sensitization by AZD1775 was associated with persistent γH2AX and inhibition of RAD51 focus formation. In HR-proficient (BRCA2 wild-type) or -deficient (BRAC2 null) isogenic cells, AZD1775 sensitized to gemcitabine-radiation in BRCA2 wild-type, but not in BRCA2 null cells, despite significant G2 checkpoint abrogation. In patient-derived pancreatic tumor xenografts, AZD1775 significantly inhibited tumor growth and impaired RAD51 focus formation in response to gemcitabine-radiation. In conclusion, WEE1 inhibition by AZD1775 is an effective strategy for sensitizing pancreatic cancers to gemcitabine chemoradiation. Although this sensitization is accompanied by inhibition of CDK1 phosphorylation and G2 checkpoint abrogation, this mechanism is not sufficient for sensitization. Our findings demonstrate that sensitization to chemoradiation by WEE1 inhibition results from inhibition of HR repair and suggest that patient tumors without underlying HR defects would benefit most from this therapy.

Collaboration


Dive into the Joshua D. Parsels's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lili Zhao

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge