Jonathan P. Folland
Loughborough University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jonathan P. Folland.
Sports Medicine | 2007
Jonathan P. Folland; Alun G. Williams
AbstractHigh-resistance strength training (HRST) is one of the most widely practiced forms of physical activity, which is used to enhance athletic performance, augment musculo-skeletal health and alter body aesthetics. Chronic exposure to this type of activity produces marked increases in muscular strength, which are attributed to a range of neurological and morphological adaptations. This review assesses the evidence for these adaptations, their interplay and contribution to enhanced strength and the methodologies employed.The primary morphological adaptations involve an increase in the cross-sectional area of the whole muscle and individual muscle fibres, which is due to an increase in myofibrillar size and number. Satellite cells are activated in the very early stages of training; their proliferation and later fusion with existing fibres appears to be intimately involved in the hypertrophy response. Other possible morphological adaptations include hyperplasia, changes in fibre type, muscle architecture, myofilament density and the structure of connective tissue and tendons.Indirect evidence for neurological adaptations, which encompasses learning and coordination, comes from the specificity of the training adaptation, transfer of unilateral training to the contralateral limb and imagined contractions. The apparent rise in whole-muscle specific tension has been primarily used as evidence for neurological adaptations; however, morphological factors (e.g. preferential hypertrophy of type 2 fibres, increased angle of fibre pennation, increase in radiological density) are also likely to contribute to this phenomenon. Changes in inter-muscular coordination appear critical. Adaptations in agonist muscle activation, as assessed by electromyography, tetanic stimulation and the twitch interpolation technique, suggest small, but significant increases. Enhanced firing frequency and spinal reflexes most likely explain this improvement, although there is contrary evidence suggesting no change in cortical or corticospinal excitability.The gains in strength with HRST are undoubtedly due to a wide combination of neurological and morphological factors. Whilst the neurological factors may make their greatest contribution during the early stages of a training programme, hypertrophic processes also commence at the onset of training.
Medicine and Science in Sports and Exercise | 2008
Vernon Neville; Michael Gleeson; Jonathan P. Folland
UNLABELLED The relationship between physiological and psychological stress and immune function is widely recognized; however, there is little evidence to confirm a direct link between depressed immune function and incidence of illness in athletes. PURPOSE To examine the relationship between salivary immunoglobulin A (s-IgA) and upper respiratory infections (URI) in a cohort of professional athletes over a prolonged period. METHODS Thirty-eight elite Americas Cup yacht racing athletes were studied over 50 wk of training. Resting, unstimulated saliva samples were collected weekly (38 h after exercise, consistent time of day, fasted) together with clinically confirmed URI, training load, and perceived fatigue rating. RESULTS s-IgA was highly variable within (coefficients of variation [CV] = 48%) and between subjects (CV = 71%). No significant correlation was found between absolute s-IgA concentration and the incidence of URI among athletes (r = 0.11). However, a significant (28%, P < 0.005) reduction in s-IgA occurred during the 3 wk before URI episodes and returned to baseline by 2 wk after a URI. When an athlete did not have, or was not recovering from URI, a s-IgA value lower than 40% of their mean healthy s-IgA concentration indicated a one in two chance of contracting an URI within 3 wk. CONCLUSION On a group basis, relative s-IgA determined a substantial proportion of the variability in weekly URI incidence. The typical decline in an individuals relative s-IgA over the 3 wk before a URI appears to precede and contribute to URI risk, with the magnitude of the decrease related to the risk of URI, independent of the absolute s-IgA concentration. These findings have important implications for athletes and coaches in identifying periods of high URI risk.
Experimental Physiology | 2000
Jonathan P. Folland; Ben Leach; Tom Little; Kate Hawker; Sg Myerson; Hugh Montgomery; David A. Jones
The response to strength training varies widely between individuals and is considerably influenced by genetic variables, which until now, have remained unidentified. The deletion (D), rather than the insertion (I), variant of the human angiotensin‐converting enzyme (ACE) genotype is an important factor in the hypertrophic response of cardiac muscle to exercise and could also be involved in skeletal muscle hypertrophy – an important factor in the response to functional overload. Subjects were 33 healthy male volunteers with no experience of strength training. We examined the effect of ACE genotype upon changes in strength of quadriceps muscles in response to 9 weeks of specific strength training (isometric or dynamic). There was a significant interaction between ACE genotype and isometric training with greater strength gains shown by subjects with the D allele (mean ± S.E.M.: II, 9.0 ± 1.7%; ID, 17.6 ± 2.2%; DD, 14.9 ± 1.3%, ANOVA, P 0.05). A consistent genotype and training interaction (ID DD II) was observed across all of the strength measures, and both types of training. ACE genotype is the first genetic factor to be identified in the response of skeletal muscle to strength training. The association of the ACE I/D polymorphism with the responses of cardiac and skeletal muscle to functional overload indicates that they may share a common mechanism. These findings suggest a novel mechanism, involving the renin‐angiotensin system, in the response of skeletal muscle to functional overload and may have implications for the management of conditions such as muscle wasting disorders, prolonged bed rest, ageing and rehabilitation, where muscle weakness may limit function.
The Journal of Physiology | 2008
Alun G. Williams; Jonathan P. Folland
Human physical capability is influenced by many environmental and genetic factors, and it is generally accepted that physical capability phenotypes are highly polygenic. However, the ways in which relevant polymorphisms combine to influence the physical capability of individuals and populations are unknown. Initially, the literature was searched to identify associations between 23 genetic polymorphisms and human endurance phenotypes. Next, typical genotype frequencies of those polymorphisms in the general population were obtained from suitable literature. Using probability calculations, we found only a 0.0005% chance of a single individual in the world having the ‘preferable’ form of all 23 polymorphisms. As the number of DNA variants shown to be associated with human endurance phenotypes continues to increase, the probability of any single individual possessing the ‘preferable’ form of each polymorphism will become even lower. However, with population turnover, the chance of such genetically gifted individuals existing increases. To examine the polygenic endurance potential of a human population, a ‘total genotype score’ (for the 23 polymorphisms) was calculated for each individual within a hypothetical population of 1000 000. There was considerable homogeneity in terms of genetic predisposition to high endurance potential, with 99% of people differing by no more than seven genotypes from the typical profile. Consequently, with population turnover world and Olympic records should improve even without further enhancement of environmental factors, as more ‘advantageous’ polygenic profiles occasionally, though rarely, emerge. More broadly, human potential appears limited by the similarity of polygenic profiles at both the ‘elite sport’ and ‘chronic disorder’ ends of the performance continuum.
British Journal of Sports Medicine | 2002
Jonathan P. Folland; C.S. Irish; J.C. Roberts; J.E. Tarr; David A. Jones
Background: High resistance training enhances muscular strength, and recent work has suggested an important role for metabolite accumulation in this process. Objective: To investigate the role of fatigue and metabolite accumulation in strength gains by comparing highly fatiguing and non-fatiguing isotonic training protocols. Methods: Twenty three healthy adults (18–29 years of age; eight women) were assigned to either a high fatigue protocol (HF: four sets of 10 repetitions with 30 seconds rest between sets) to maximise metabolic stress or a low fatigue protocol (LF: 40 repetitions with 30 seconds between each repetition) to minimise changes. Subjects lifted on average 73% of their 1 repetition maximum through the full range of knee extension with both legs, three times a week. Quadriceps isometric strength of each leg was measured at a knee joint angle of 1.57 rad (90°), and a Cybex 340 isokinetic dynamometer was used to measure the angle-torque and torque-velocity relations of the non-dominant leg. Results: At the mid-point of the training, the HF group had 50% greater gains in isometric strength, although this was not significant (4.5 weeks: HF, 13.3 (4.4)%; LF, 8.9 (3.6)%). This rate of increase was not sustained by the HF group, and after nine weeks of training all the strength measurements showed similar improvements for both groups (isometric strength: HF, 18.2 (3.9)%; LF, 14.5 (4.0)%). The strength gains were limited to the longer muscle lengths despite training over the full range of movement. Conclusions: Fatigue and metabolite accumulation do not appear to be critical stimuli for strength gain, and resistance training can be effective without the severe discomfort and acute physical effort associated with fatiguing contractions.
Medicine and Science in Sports and Exercise | 2010
Neale A. Tillin; Pedro Jimenez-Reyes; Matthew T.G. Pain; Jonathan P. Folland
PURPOSE Electromechanical delay (EMD) and rate of force development (RFD) are determinants of explosive neuromuscular performance. We may expect a contrast in EMD and RFD between explosive power athletes, who have a demonstrable ability for explosive contractions, and untrained individuals. However, comparison and the neuromuscular mechanisms for any differences have not been studied. METHODS The neuromuscular performance of explosive power athletes (n = 9) and untrained controls (n = 10) was assessed during a series of twitch, tetanic, explosive, and maximum voluntary isometric knee extensions. Knee extension force and EMG of the superficial quadriceps were measured in three 50-ms time windows from their onset and were normalized to strength and maximal M-wave (Mmax), respectively. Involuntary and voluntary EMD were determined from twitch and explosive voluntary contractions, respectively, and were similar for both groups. RESULTS The athletes were 28% stronger, and their absolute RFD in the first 50 ms was twofold that of controls. Athletes had greater normalized RFD (4.86 ± 1.46 vs 2.81 ± 1.20 MVC·s(-1)) and neural activation (mean quadriceps, 0.26 ± 0.07 vs 0.15 ± 0.06 Mmax) during the first 50 ms of explosive voluntary contractions. Surprisingly, the controls had a greater normalized RFD in the second 50 ms (6.68 ± 0.92 vs 7.93 ± 1.11 MVC·s-1) and a greater change in EMG preceding this period. However, there were no differences in the twitch response or normalized tetanic RFD between groups. CONCLUSIONS The differences in voluntary normalized RFD between athletes and controls were explained by agonist muscle neural activation and not by the similar intrinsic contractile properties of the groups.
Scandinavian Journal of Medicine & Science in Sports | 2014
Jonathan P. Folland; Matthew W. Buckthorpe; Ricci Hannah
This study assessed the integrative neural and contractile determinants of human knee extension explosive force production. Forty untrained participants performed voluntary and involuntary (supramaximally evoked twitches and octets – eight pulses at 300 Hz that elicit the maximum possible rate of force development) explosive isometric contractions of the knee extensors. Explosive force (F0–150 ms) and sequential rate of force development (RFD, 50‐ms epochs) were measured. Surface electromyography (EMG) amplitude was recorded (superficial quadriceps and hamstrings, 50‐ms epochs) and normalized (quadriceps to Mmax, hamstrings to EMGmax). Maximum voluntary force (MVF) was also assessed. Multiple linear regressions assessed the significant neural and contractile determinants of absolute and relative (%MVF) explosive force and sequential RFD. Explosive force production exhibited substantial interindividual variability, particularly during the early phase of contraction [F50, 13‐fold (absolute); 7.5‐fold (relative)]. Multiple regression explained 59–93% (absolute) and 35–60% (relative) of the variance in explosive force production. The primary determinants of explosive force changed during the contraction (F0–50, quadriceps EMG and Twitch F; RFD50–100, Octet RFD0–50; F100–150, MVF). In conclusion, explosive force production was largely explained by predictor neural and contractile variables, but the specific determinants changed during the phase of contraction.
Medicine and Science in Sports and Exercise | 2014
Georg Haider; Jonathan P. Folland
PURPOSE Dietary nitrate supplementation positively affects cardiovascular function at rest and energy metabolism during exercise in humans and has recently also been reported to markedly enhance the in vitro contractile properties of mouse fast-twitch muscle. The aim of this study was to investigate the effects of short-term nitrate supplementation on the in vivo contractile properties of the skeletal muscle and voluntary muscle function of humans. METHODS In a double-blind, randomized, crossover design, 19 healthy untrained men (21 ± 3 yr) ingested a nitrate-rich concentrated beetroot juice (NIT; nitrate dosage, approximately 9.7 mmol·d) and a placebo (PLA) for seven consecutive days. After the last supplementation dose, force was recorded while participants completed a series of voluntary and involuntary (electrically evoked) unilateral isometric contractions of the knee extensors. RESULTS NIT enhanced the peak force response to low-frequency electrical stimulation, as follows: maximal twitch (NIT, 149 ± 41 N, vs PLA, 138 ± 37 N; P = 0.008; effect size, r (ES) = 0.56) and submaximal 1- to 20-Hz contractions (5%-10%, ES = 0.53-0.63). Whereas explosive (rising phase) force production during the first 50 ms of evoked maximal twitch and octet contractions (eight electrical impulses at 300 Hz) was also 3%-15% greater after NIT compared with that after PLA (P = 0.023-0.048, ES = 0.52-0.59), explosive voluntary force remained similar (P = 0.510, ES = 0.16). Maximum voluntary force was also unchanged after NIT (P = 0.539, ES = 0.15). CONCLUSIONS These results indicate that 7 d of dietary nitrate supplementation enhanced the in vivo contractile properties of the human skeletal muscle. Specifically, nitrate supplementation improved excitation-contraction coupling at low frequencies of stimulation and enhanced evoked explosive force production but did not affect maximum or explosive voluntary force production in untrained individuals.
Bone | 2013
Sarah J. Allison; Jonathan P. Folland; Winston Rennie; Gregory D. Summers; Katherine S.F. Brooke-Wavell
INTRODUCTION There is little evidence as to whether exercise can increase BMD in older men with no investigation of high impact exercise. Lifestyle changes and individual variability may confound exercise trials but can be minimised using a within-subject unilateral design (exercise leg [EL] vs. control leg [CL]) that has high statistical power. PURPOSE This study investigated the influence of a 12month high impact unilateral exercise intervention on femoral neck BMD in older men. METHODS Fifty, healthy, community-dwelling older men commenced a 12month high impact unilateral exercise intervention which increased to 50 multidirectional hops, 7days a week on one randomly allocated leg. BMD of both femurs was measured using dual energy X-ray absorptiometry (DXA) before and after 12months of exercise, by an observer blind to the leg allocation. Repeated measures ANOVA with post hoc tests was used to detect significant effects of time, leg and interaction. RESULTS Thirty-five men (mean±SD, age 69.9±4.0years) exercised for 12months and intervention adherence was 90.5±9.1% (304±31 sessions completed out of 336 prescribed sessions). Fourteen men did not complete the 12month exercise intervention due to: health problems or injuries unrelated to the intervention (n=9), time commitments (n=2), or discomfort during exercise (n=3), whilst BMD data were missing for one man. Femoral neck BMD, BMC and cross-sectional area all increased in the EL (+0.7, +0.9 and +1.2 % respectively) compared to the CL (-0.9, -0.4 and -1.2%); interaction effect P<0.05. Although the interaction term was not significant (P>0.05), there were significant main effects of time for section modulus (P=0.044) and minimum neck width (P=0.006). Section modulus increased significantly in the EL (P=0.016) but not in the CL (P=0.465); mean change +2.3% and +0.7% respectively, whereas minimum neck width increased significantly in the CL (P=0.004) but not in the EL (P=0.166); mean changes being +0.7% and +0.3% respectively. CONCLUSION A 12month high impact unilateral exercise intervention was feasible and effective for improving femoral neck BMD, BMC and geometry in older men. Carefully targeted high impact exercises may be suitable for incorporation into exercise interventions aimed at preventing fractures in healthy community-dwelling older men.
Journal of Sports Sciences | 2013
Neale A. Tillin; Matthew T.G. Pain; Jonathan P. Folland
Abstract This study investigated the association between explosive force production during isometric squats and athletic performance (sprint time and countermovement jump height). Sprint time (5 and 20 m) and jump height were recorded in 18 male elite-standard varsity rugby union players. Participants also completed a series of maximal- and explosive-isometric squats to measure maximal force and explosive force at 50-ms intervals up to 250 ms from force onset. Sprint performance was related to early phase (≤100 ms) explosive force normalised to maximal force (5 m, r = −0.63, P = 0.005; and 20 m, r = −0.54, P = 0.020), but jump height was related to later phase (>100 ms) absolute explosive force (0.51 < r < 0.61; 0.006 < P < 0.035). When participants were separated for 5-m sprint time (< or ≥ 1s), the faster group had greater normalised explosive force in the first 150 ms of explosive-isometric squats (33–67%; 0.001 < P < 0.017). The results suggest that explosive force production during isometric squats was associated with athletic performance. Specifically, sprint performance was most strongly related to the proportion of maximal force achieved in the initial phase of explosive-isometric squats, whilst jump height was most strongly related to absolute force in the later phase of the explosive-isometric squats.