Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Neale A. Tillin is active.

Publication


Featured researches published by Neale A. Tillin.


Sports Medicine | 2009

Factors Modulating Post-Activation Potentiation and its Effect on Performance of Subsequent Explosive Activities

Neale A. Tillin; David Bishop

Post-activation potentiation (PAP) is induced by a voluntary conditioning contraction (CC), performed typically at a maximal or near-maximal intensity, and has consistently been shown to increase both peak force and rate of force development during subsequent twitch contractions. The proposed mechanisms underlying PAP are associated with phosphorylation of myosin regulatory light chains, increased recruitment of higher order motor units, and a possible change in pennation angle. If PAP could be induced by a CC in humans, and utilized during a subsequent explosive activity (e.g. jump or sprint), it could potentially enhance mechanical power and thus performance and/or the training stimulus of that activity. However, the CC might also induce fatigue, and it is the balance between PAP and fatigue that will determine the net effect on performance of a subsequent explosive activity. The PAP-fatigue relationship is affected by several variables including CC volume and intensity, recovery period following the CC, type of CC, type of subsequent activity, and subject characteristics. These variables have not been standardized across past research, and as a result, evidence of the effects of CC on performance of subsequent explosive activities is equivocal. In order to better inform and direct future research on this topic, this article will highlight and discuss the key variables that may be responsible for the contrasting results observed in the current literature. Future research should aim to better understand the effect of different conditions on the interaction between PAP and fatigue, with an aim of establishing the specific application (if any) of PAP to sport.


Medicine and Science in Sports and Exercise | 2010

Neuromuscular Performance of Explosive Power Athletes versus Untrained Individuals

Neale A. Tillin; Pedro Jimenez-Reyes; Matthew T.G. Pain; Jonathan P. Folland

PURPOSE Electromechanical delay (EMD) and rate of force development (RFD) are determinants of explosive neuromuscular performance. We may expect a contrast in EMD and RFD between explosive power athletes, who have a demonstrable ability for explosive contractions, and untrained individuals. However, comparison and the neuromuscular mechanisms for any differences have not been studied. METHODS The neuromuscular performance of explosive power athletes (n = 9) and untrained controls (n = 10) was assessed during a series of twitch, tetanic, explosive, and maximum voluntary isometric knee extensions. Knee extension force and EMG of the superficial quadriceps were measured in three 50-ms time windows from their onset and were normalized to strength and maximal M-wave (Mmax), respectively. Involuntary and voluntary EMD were determined from twitch and explosive voluntary contractions, respectively, and were similar for both groups. RESULTS The athletes were 28% stronger, and their absolute RFD in the first 50 ms was twofold that of controls. Athletes had greater normalized RFD (4.86 ± 1.46 vs 2.81 ± 1.20 MVC·s(-1)) and neural activation (mean quadriceps, 0.26 ± 0.07 vs 0.15 ± 0.06 Mmax) during the first 50 ms of explosive voluntary contractions. Surprisingly, the controls had a greater normalized RFD in the second 50 ms (6.68 ± 0.92 vs 7.93 ± 1.11 MVC·s-1) and a greater change in EMG preceding this period. However, there were no differences in the twitch response or normalized tetanic RFD between groups. CONCLUSIONS The differences in voluntary normalized RFD between athletes and controls were explained by agonist muscle neural activation and not by the similar intrinsic contractile properties of the groups.


Journal of Sports Sciences | 2013

Explosive force production during isometric squats correlates with athletic performance in rugby union players

Neale A. Tillin; Matthew T.G. Pain; Jonathan P. Folland

Abstract This study investigated the association between explosive force production during isometric squats and athletic performance (sprint time and countermovement jump height). Sprint time (5 and 20 m) and jump height were recorded in 18 male elite-standard varsity rugby union players. Participants also completed a series of maximal- and explosive-isometric squats to measure maximal force and explosive force at 50-ms intervals up to 250 ms from force onset. Sprint performance was related to early phase (≤100 ms) explosive force normalised to maximal force (5 m, r = −0.63, P = 0.005; and 20 m, r = −0.54, P = 0.020), but jump height was related to later phase (>100 ms) absolute explosive force (0.51 < r < 0.61; 0.006 < P < 0.035). When participants were separated for 5-m sprint time (< or ≥ 1s), the faster group had greater normalised explosive force in the first 150 ms of explosive-isometric squats (33–67%; 0.001 < P < 0.017). The results suggest that explosive force production during isometric squats was associated with athletic performance. Specifically, sprint performance was most strongly related to the proportion of maximal force achieved in the initial phase of explosive-isometric squats, whilst jump height was most strongly related to absolute force in the later phase of the explosive-isometric squats.


Muscle & Nerve | 2011

Short-term unilateral resistance training affects the agonist–antagonist but not the force–agonist activation relationship

Neale A. Tillin; Matthew T.G. Pain; Jonathan P. Folland

In this study we investigated the contribution of neural adaptations to strength changes after 4 weeks of unilateral isometric resistance training. Maximal and submaximal isometric knee extension contractions were assessed before and after training. Surface electromyography (EMG) data were collected from the agonist and antagonist muscles and normalized to evoked maximal M‐wave and maximal knee flexor EMG, respectively. The interpolated twitch technique (ITT) was also used to determine activation at maximum voluntary force (MVF). MVF increased in the trained (+20%) and untrained (+8%) legs. Agonist EMG at MVF increased in the trained leg (+26%), although activation determined via the ITT was unchanged. In both legs the position of the force–agonist EMG relationship was unchanged, but antagonist coactivation was lower for all levels of agonist activation. Strength gains in the trained leg were due to enhanced agonist activation, whereas decreased coactivation may have affected strength changes in both legs. Muscle Nerve, 2011


Experimental Physiology | 2012

Short‐term training for explosive strength causes neural and mechanical adaptations

Neale A. Tillin; Matthew T.G. Pain; Jonathan P. Folland

This study investigated the neural and peripheral adaptations to short‐term training for explosive force production. Ten men trained the knee extensors with unilateral explosive isometric contractions (1 s ‘fast and hard’) for 4 weeks. Before and after training, force was recorded at 50‐ms intervals from force onset (F50, F100 and F150) during both voluntary and involuntary (supramaximal evoked octet; eight pulses at 300 Hz) explosive isometric contractions. Neural drive during the explosive voluntary contractions was measured with the ratio of voluntary/octet force, and average EMG normalized to the peak‐to‐peak M‐wave of the three superficial quadriceps. Maximal voluntary force (MVF) was also measured, and ultrasonic images of the vastus lateralis were recorded during ramped contractions to assess muscle–tendon unit stiffness between 50 and 90% MVF. There was an increase in voluntary F50 (+54%), F100 (+15%) and F150 (+14%) and in octet F50 (+7%) and F100 (+10%). Voluntary F100 and F150, and octet F50 and F100 increased proportionally with MVF (+11%). However, the increase in voluntary F50 was +37% even after normalization to MVF, and coincided with a 42% increase in both voluntary/octet force and agonist‐normalized EMG over the first 50 ms. Muscle–tendon unit stiffness between 50 and 90% MVF also increased. In conclusion, enhanced agonist neural drive and MVF accounted for improved explosive voluntary force production in the early and late phases of the contraction, respectively. The increases in explosive octet force and muscle–tendon unit stiffness provide novel evidence of peripheral adaptations within merely 4 weeks of training for explosive force production.


Journal of Applied Physiology | 2016

Training-specific functional, neural, and hypertrophic adaptations to explosive- vs. sustained-contraction strength training

Thomas G. Balshaw; Garry J. Massey; Thomas M. Maden-Wilkinson; Neale A. Tillin; Jonathan P. Folland

Training specificity is considered important for strength training, although the functional and underpinning physiological adaptations to different types of training, including brief explosive contractions, are poorly understood. This study compared the effects of 12 wk of explosive-contraction (ECT, n = 13) vs. sustained-contraction (SCT, n = 16) strength training vs. control (n = 14) on the functional, neural, hypertrophic, and intrinsic contractile characteristics of healthy young men. Training involved 40 isometric knee extension repetitions (3 times/wk): contracting as fast and hard as possible for ∼1 s (ECT) or gradually increasing to 75% of maximum voluntary torque (MVT) before holding for 3 s (SCT). Torque and electromyography during maximum and explosive contractions, torque during evoked octet contractions, and total quadriceps muscle volume (QUADSVOL) were quantified pre and post training. MVT increased more after SCT than ECT [23 vs. 17%; effect size (ES) = 0.69], with similar increases in neural drive, but greater QUADSVOL changes after SCT (8.1 vs. 2.6%; ES = 0.74). ECT improved explosive torque at all time points (17-34%; 0.54 ≤ ES ≤ 0.76) because of increased neural drive (17-28%), whereas only late-phase explosive torque (150 ms, 12%; ES = 1.48) and corresponding neural drive (18%) increased after SCT. Changes in evoked torque indicated slowing of the contractile properties of the muscle-tendon unit after both training interventions. These results showed training-specific functional changes that appeared to be due to distinct neural and hypertrophic adaptations. ECT produced a wider range of functional adaptations than SCT, and given the lesser demands of ECT, this type of training provides a highly efficient means of increasing function.


Proceedings of the Royal Society of London B: Biological Sciences | 2012

Contraction type influences the human ability to use the available torque capacity of skeletal muscle during explosive efforts

Neale A. Tillin; Matthew T.G. Pain; Jonathan P. Folland

The influence of contraction type on the human ability to use the torque capacity of skeletal muscle during explosive efforts has not been documented. Fourteen male participants completed explosive voluntary contractions of the knee extensors in four separate conditions: concentric (CON) and eccentric (ECC); and isometric at two knee angles (101°, ISO101 and 155°, ISO155). In each condition, torque was measured at 25 ms intervals up to 150 ms from torque onset, and then normalized to the maximum voluntary torque (MVT) specific to that joint angle and angular velocity. Explosive voluntary torque after 50 ms in each condition was also expressed as a percentage of torque generated after 50 ms during a supramaximal 300 Hz electrically evoked octet in the same condition. Explosive voluntary torque normalized to MVT was more than 60 per cent larger in CON than any other condition after the initial 25 ms. The percentage of evoked torque expressed after 50 ms of the explosive voluntary contractions was also greatest in CON (ANOVA; p < 0.001), suggesting higher concentric volitional activation. This was confirmed by greater agonist electromyography normalized to Mmax (recorded during the explosive voluntary contractions) in CON. These results provide novel evidence that the ability to use the muscles torque capacity explosively is influenced by contraction type, with concentric contractions being more conducive to explosive performance due to a more effective neural strategy.


Experimental Physiology | 2017

The influence of patellar tendon and muscle–tendon unit stiffness on quadriceps explosive strength in man

Garry J. Massey; Thomas G. Balshaw; Thomas M. Maden-Wilkinson; Neale A. Tillin; Jonathan P. Folland

What is the central question of this study? Do tendon and/or muscle–tendon unit stiffness influence rate of torque development? What is the main finding and its importance? In our experimental conditions, some measures of relative (to maximal voluntary torque and tissue length) muscle–tendon unit stiffness had small correlations with voluntary/evoked rate of torque development over matching torque increments. However, absolute and relative tendon stiffness were unrelated to voluntary and evoked rate of torque development. Therefore, the muscle aponeurosis but not free tendon influences the relative rate of torque development. Factors other than tissue stiffness more strongly determine the absolute rate of torque development.


The Journal of Experimental Biology | 2018

Contraction speed and type influences rapid utilisation of available muscle force: neural and contractile mechanisms

Neale A. Tillin; Matthew T.G. Pain; Jonathan P. Folland

ABSTRACT This study investigated the influence of contraction speed and type on the human ability to rapidly increase torque and utilise the available maximum voluntary torque (MVT) as well as the neuromuscular mechanisms underpinning any effects. Fifteen young, healthy males completed explosive voluntary knee extensions in five conditions: isometric (ISO), and both concentric and eccentric at two constant accelerations of 500 deg s−2 (CONSLOW and ECCSLOW) and 2000 deg s−2 (CONFAST and ECCFAST). Explosive torque and quadriceps EMG were recorded every 25 ms up to 150 ms from their respective onsets and normalised to the available MVT and EMG at MVT, respectively, specific to that joint angle and velocity. Neural efficacy (explosive voluntary:evoked octet torque) was also measured, and torque data were entered into a Hill-type muscle model to estimate muscle performance. Explosive torques normalised to MVT (and normalised muscle forces) were greatest in the concentric followed by the isometric and eccentric conditions, and in the fast compared with slow speeds within the same contraction type (CONFAST>CONSLOW>ISO, and ECCFAST>ECCSLOW). Normalised explosive-phase EMG and neural efficacy were greatest in concentric conditions, followed by isometric and eccentric conditions, but were similar for fast and slow contractions of the same type. Thus, distinct neuromuscular activation appeared to explain the effect of contraction type but not speed on normalised explosive torque, suggesting the speed effect is an intrinsic contractile property. These results provide novel evidence that the ability to rapidly increase torque/force and utilise the available MVT is influenced by both contraction type and speed, owing to neural and contractile mechanisms, respectively. Summary: Time to maximum force in skeletal muscle is shorter at fast versus slow contraction speeds, owing to contractile mechanisms, and in concentric versus isometric or eccentric contractions, owing to neural mechanisms.


Frontiers in Physiology | 2018

Tendinous tissue adaptation to explosive-vs. sustained-contraction strength training

Garry J. Massey; Thomas G. Balshaw; Thomas M. Maden-Wilkinson; Neale A. Tillin; Jonathan P. Folland

The effect of different strength training regimes, and in particular training utilizing brief explosive contractions, on tendinous tissue properties is poorly understood. This study compared the efficacy of 12 weeks of knee extensor explosive-contraction (ECT; n = 14) vs. sustained-contraction (SCT; n = 15) strength training vs. a non-training control (n = 13) to induce changes in patellar tendon and knee extensor tendon–aponeurosis stiffness and size (patellar tendon, vastus-lateralis aponeurosis, quadriceps femoris muscle) in healthy young men. Training involved 40 isometric knee extension contractions (three times/week): gradually increasing to 75% of maximum voluntary torque (MVT) before holding for 3 s (SCT), or briefly contracting as fast as possible to ∼80% MVT (ECT). Changes in patellar tendon stiffness and Young’s modulus, tendon–aponeurosis complex stiffness, as well as quadriceps femoris muscle volume, vastus-lateralis aponeurosis area and patellar tendon cross-sectional area were quantified with ultrasonography, dynamometry, and magnetic resonance imaging. ECT and SCT similarly increased patellar tendon stiffness (20% vs. 16%, both p < 0.05 vs. control) and Young’s modulus (22% vs. 16%, both p < 0.05 vs. control). Tendon–aponeurosis complex high-force stiffness increased only after SCT (21%; p < 0.02), while ECT resulted in greater overall elongation of the tendon–aponeurosis complex. Quadriceps muscle volume only increased after sustained-contraction training (8%; p = 0.001), with unclear effects of strength training on aponeurosis area. The changes in patellar tendon cross-sectional area after strength training were not appreciably different to control. Our results suggest brief high force muscle contractions can induce increased free tendon stiffness, though SCT is needed to increase tendon–aponeurosis complex stiffness and muscle hypertrophy.

Collaboration


Dive into the Neale A. Tillin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jamie Hall

University of Roehampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ralph Gordon

University of Roehampton

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge