Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan R. McDaniel is active.

Publication


Featured researches published by Jonathan R. McDaniel.


Nature Materials | 2009

Self-assembling chimeric polypeptide–doxorubicin conjugate nanoparticles that abolish tumours after a single injection

J. Andrew MacKay; Mingnan Chen; Jonathan R. McDaniel; Wenge Liu; Andrew J. Simnick; Ashutosh Chilkoti

New strategies to self-assemble biocompatible materials into nanoscale, drug-loaded packages with improved therapeutic efficacy are needed for nanomedicine. To address this need, we developed artificial recombinant chimeric polypeptides (CPs) that spontaneously self-assemble into sub-100 nm size, near monodisperse nanoparticles upon conjugation of diverse hydrophobic molecules, including chemotherapeutics. These CPs consist of a biodegradable polypeptide that is attached to a short Cys-rich segment. Covalent modification of the Cys residues with a structurally diverse set of hydrophobic small molecules, including chemotherapeutics leads to spontaneous formation of nanoparticles over a range of CP compositions and molecular weights. When used to deliver chemotherapeutics to a murine cancer model, CP nanoparticles have a four-fold higher maximum tolerated dose than free drug, and induce nearly complete tumor regression after a single dose. This simple strategy can promote co-assembly of drugs, imaging agents, and targeting moieties into multifunctional nanomedicines.


Advanced Drug Delivery Reviews | 2010

Drug delivery to solid tumors by elastin-like polypeptides

Jonathan R. McDaniel; Daniel J. Callahan; Ashutosh Chilkoti

Thermally responsive elastin-like polypeptides (ELPs) are a promising class of recombinant biopolymers for the delivery of drugs and imaging agents to solid tumors via systemic or local administration. This article reviews four applications of ELPs to drug delivery, with each delivery mechanism designed to best exploit the relationship between the characteristic transition temperature (T(t)) of the ELP and body temperature (T(b)). First, when T(t)≫T(b), small hydrophobic drugs can be conjugated to the C-terminus of the ELP to impart the amphiphilicity needed to mediate the self-assembly of nanoparticles. These systemically delivered ELP-drug nanoparticles preferentially localize to the tumor site via the EPR effect, resulting in reduced toxicity and enhanced treatment efficacy. The remaining three approaches take direct advantage of the thermal responsiveness of ELPs. In the second strategy, where T(b)<T(t)<42°C, an ELP-drug conjugate can be injected in conjunction with external application of mild hyperthermia to the tumor to induce ELP coacervation and an increase in concentration within the tumor vasculature. The third approach utilizes hydrophilic-hydrophobic ELP block copolymers that have been designed to assemble into nanoparticles in response to hyperthermai due to the independent thermal transition of the hydrophobic block, thus resulting in multivalent ligand display of a ligand for spatially enhanced vascular targeting. In the final strategy, ELPs with T(t)<T(b) are conjugated with radiotherapeutics, injtect intioa tumor where they undergo coacervation to form an injectable drug depot for intratumoral delivery. These injectable coacervate ELP-radionuclide depots display a long residence in the tumor and result in inhibition of tumor growth.


Journal of Controlled Release | 2012

Doxorubicin-conjugated chimeric polypeptide nanoparticles that respond to mild hyperthermia

Jonathan R. McDaniel; Sarah R. MacEwan; Mark W. Dewhirst; Ashutosh Chilkoti

This paper reports the design, physicochemical characterization and in vitro cytotoxicity of a thermally responsive chimeric polypeptide (CP), derived from an elastin-like polypeptide (ELP). The CP self-assembles into ~40 nm diameter nanoparticles upon conjugation of multiple copies of doxorubicin (Dox), and displays a nanoparticle-to-aggregate phase transition between 39 and 42 °C in media, a temperature range suitable for mild hyperthermia of solid tumors. The CP-Dox nanoparticle is stable upon dilution to low micromolar concentrations, and is cytotoxic at both 37 and 42 °C. A thermally responsive nanoparticle formulation of Dox may prove to be broadly useful in hyperthermia targeted chemotherapy of a variety of solid tumors.


Biomacromolecules | 2009

Fabrication of Elastin-Like Polypeptide Nanoparticles for Drug Delivery by Electrospraying

Yiquan Wu; J. Andrew MacKay; Jonathan R. McDaniel; Ashutosh Chilkoti; Robert L. Clark

The development of environmentally responsive drug carriers requires new methods for assembling stimuli-responsive nanoparticulates. This communication describes a novel application of electrospray to construct bioresponsive peptide-based particulates, which can encapsulate drugs. These particles are composed from genetically engineered elastin-like polypeptides (ELPs), a biodegradable, biocompatible, and bioresponsive polymer. To generate nanoparticles (300-400 nm in diameter), ELPs and drugs are codissolved in organic solvent, accelerated across a voltage gradient, dried by evaporation during transit, and collected from a target surface. These findings indicate that particle diameter, polydispersity, and morphology are strong functions of the solvent concentration, spraying voltage, and polymer molecular weight. Surprisingly, the loading of drug at 20 w/w% did not influence particle morphology; furthermore, drug release from these particles correlated with the pH-dependent solubility of the parent ELPs. These studies suggest that electrospray is an efficient and flexible method for generating stimuli-responsive drug particles.


Biomacromolecules | 2010

Recursive Directional Ligation by Plasmid Reconstruction Allows Rapid and Seamless Cloning of Oligomeric Genes

Jonathan R. McDaniel; J. Andrew MacKay; Felipe García Quiroz; Ashutosh Chilkoti

This paper reports a new strategy, recursive directional ligation by plasmid reconstruction (PRe-RDL), to rapidly clone highly repetitive polypeptides of any sequence and specified length over a large range of molecular weights. In a single cycle of PRe-RDL, two halves of a parent plasmid, each containing a copy of an oligomer, are ligated together, thereby dimerizing the oligomer and reconstituting a functional plasmid. This process is carried out recursively to assemble an oligomeric gene with the desired number of repeats. PRe-RDL has several unique features that stem from the use of type IIs restriction endonucleases: first, PRe-RDL is a seamless cloning method that leaves no extraneous nucleotides at the ligation junction. Because it uses type IIs endonucleases to ligate the two halves of the plasmid, PRe-RDL also addresses the major limitation of RDL in that it abolishes any restriction on the gene sequence that can be oligomerized. The reconstitution of a functional plasmid only upon successful ligation in PRe-RDL also addresses two other limitations of RDL: the significant background from self-ligation of the vector observed in RDL, and the decreased efficiency of ligation due to nonproductive circularization of the insert. PRe-RDL can also be used to assemble genes that encode different sequences in a predetermined order to encode block copolymers or append leader and trailer peptide sequences to the oligomerized gene.


Angewandte Chemie | 2013

Self-Assembly of Thermally Responsive Nanoparticles of a Genetically Encoded Peptide Polymer by Drug Conjugation†

Jonathan R. McDaniel; Jayanta Bhattacharyya; Kevin B. Vargo; Wafa Hassouneh; Daniel A. Hammer; Ashutosh Chilkoti

Chimeric polypeptides (CPs) that are derived from elastin-like polypeptides (ELPs) can self-assemble to form nanoparticles by site-specific covalent attachment of hydrophobic molecules to one end of the biopolymer backbone. Molecules with a distribution coefficient greater than 1.5 impart sufficient amphiphilicity to drive self-assembly into sub-100 nm nanoparticles.


Biomacromolecules | 2013

A Unified Model for De Novo Design of Elastin-like Polypeptides with Tunable Inverse Transition Temperatures

Jonathan R. McDaniel; D. Christopher Radford; Ashutosh Chilkoti

Elastin-like polypeptides (ELPs) are stimulus-responsive peptide polymers that exhibit inverse temperature phase transition behavior, causing an ELP to aggregate above its inverse transition temperature (T(t)). Although this property has been exploited in a variety of biotechnological applications, de novo design of ELPs that display a specific T(t) is not trivial because the T(t) of an ELP is a complex function of several variables, including its sequence, chain length, polypeptide concentration, and the type and concentration of cosolutes in solution. This paper provides a quantitative model that predicts the T(t) of a family of ELPs (Val-Pro-Gly-Xaa-Gly, where Xaa = Ala and/or Val) from their composition, chain length, and concentration in phosphate buffered saline. This model will enable de novo prediction of the amino acid sequence and chain length of ELPs that will display a predetermined T(t) in physiological buffer within a specified concentration regime, thereby greatly facilitating the design of new ELPs for applications in medicine and biotechnology.


Journal of Controlled Release | 2010

Injectable intratumoral depot of thermally responsive polypeptide-radionuclide conjugates delays tumor progression in a mouse model.

Wenge Liu; J. Andrew MacKay; Matthew R. Dreher; Mingnan Chen; Jonathan R. McDaniel; Andrew J. Simnick; Daniel J. Callahan; Michael R. Zalutsky; Ashutosh Chilkoti

This study evaluated a biodegradable drug delivery system for local cancer radiotherapy consisting of a thermally sensitive elastin-like polypeptide (ELP) conjugated to a therapeutic radionuclide. Two ELPs (49 kDa) were synthesized using genetic engineering to test the hypothesis that injectable biopolymeric depots can retain radionuclides locally and reduce the growth of tumors. A thermally sensitive polypeptide, ELP(1), was designed to spontaneously undergo a soluble-insoluble phase transition (forming viscous microparticles) between room temperature and body temperature upon intratumoral injection, while ELP(2) was designed to remain soluble upon injection and to serve as a negative control for the effect of aggregate assembly. After intratumoral administration of radionuclide conjugates of ELPs into implanted tumor xenografts in nude mice, their retention within the tumor, spatio-temporal distribution, and therapeutic effect were quantified. The residence time of the radionuclide-ELP(1) in the tumor was significantly longer than the thermally insensitive ELP(2) conjugate. In addition, the thermal transition of ELP(1) significantly protected the conjugated radionuclide from dehalogenation, whereas the conjugated radionuclide on ELP(2) was quickly eliminated from the tumor and cleaved from the biopolymer. These attributes of the thermally sensitive ELP(1) depot improved the antitumor efficacy of iodine-131 compared to the soluble ELP(2) control. This novel injectable and biodegradable depot has the potential to control advanced-stage cancers by reducing the bulk of inoperable tumors, enabling surgical removal of de-bulked tumors, and preserving healthy tissues.


Nature Communications | 2015

A paclitaxel-loaded recombinant polypeptide nanoparticle outperforms Abraxane in multiple murine cancer models

Jayanta Bhattacharyya; Joseph J. Bellucci; Isaac Weitzhandler; Jonathan R. McDaniel; Ivan Spasojevic; Xinghai Li; Chao-Chieh Lin; Jen-Tsan Ashley Chi; Ashutosh Chilkoti

Packaging clinically relevant hydrophobic drugs into a self-assembled nanoparticle can improve their aqueous solubility, plasma half-life, tumor specific uptake and therapeutic potential. To this end, here we conjugated paclitaxel (PTX) to recombinant chimeric polypeptides (CPs) that spontaneously self-assemble into ~60-nm diameter near-monodisperse nanoparticles that increased the systemic exposure of PTX by 7-fold compared to free drug and 2-fold compared to the FDA approved taxane nanoformulation (Abraxane®). The tumor uptake of the CP-PTX nanoparticle was 5-fold greater than free drug and 2-fold greater than Abraxane. In a murine cancer model of human triple negative breast cancer and prostate cancer, CP-PTX induced near complete tumor regression after a single dose in both tumor models, whereas at the same dose, no mice treated with Abraxane survived for more than 80 days (breast) and 60 days (prostate) respectively. These results show that a molecularly engineered nanoparticle with precisely engineered design features outperforms Abraxane, the current gold standard for paclitaxel delivery.


Nano Letters | 2014

Rational design of "heat seeking" drug loaded polypeptide nanoparticles that thermally target solid tumors.

Jonathan R. McDaniel; Sarah R. MacEwan; Xinghai Li; D. Christopher Radford; Chelsea D. Landon; Mark W. Dewhirst; Ashutosh Chilkoti

This paper demonstrates the first example of targeting a solid tumor that is externally heated to 42 °C by “heat seeking” drug-loaded polypeptide nanoparticles. These nanoparticles consist of a thermally responsive elastin-like polypeptide (ELP) conjugated to multiple copies of a hydrophobic cancer drug. To rationally design drug-loaded nanoparticles that exhibit thermal responsiveness in the narrow temperature range between 37 and 42 °C, an analytical model was developed that relates ELP composition and chain length to the nanoparticle phase transition temperature. Suitable candidates were designed based on the predictions of the model and tested in vivo by intravital confocal fluorescence microscopy of solid tumors, which revealed that the nanoparticles aggregate in the vasculature of tumors heated to 42 °C and that the aggregation is reversible as the temperature reverts to 37 °C. Biodistribution studies showed that the most effective strategy to target the nanoparticles to tumors is to thermally cycle the tumors between 37 and 42 °C. These nanoparticles set the stage for the targeted delivery of a range of cancer chemotherapeutics by externally applied mild hyperthermia of solid tumors.

Collaboration


Dive into the Jonathan R. McDaniel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Andrew MacKay

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge