Wenge Liu
Duke University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wenge Liu.
Nature Materials | 2009
J. Andrew MacKay; Mingnan Chen; Jonathan R. McDaniel; Wenge Liu; Andrew J. Simnick; Ashutosh Chilkoti
New strategies to self-assemble biocompatible materials into nanoscale, drug-loaded packages with improved therapeutic efficacy are needed for nanomedicine. To address this need, we developed artificial recombinant chimeric polypeptides (CPs) that spontaneously self-assemble into sub-100 nm size, near monodisperse nanoparticles upon conjugation of diverse hydrophobic molecules, including chemotherapeutics. These CPs consist of a biodegradable polypeptide that is attached to a short Cys-rich segment. Covalent modification of the Cys residues with a structurally diverse set of hydrophobic small molecules, including chemotherapeutics leads to spontaneous formation of nanoparticles over a range of CP compositions and molecular weights. When used to deliver chemotherapeutics to a murine cancer model, CP nanoparticles have a four-fold higher maximum tolerated dose than free drug, and induce nearly complete tumor regression after a single dose. This simple strategy can promote co-assembly of drugs, imaging agents, and targeting moieties into multifunctional nanomedicines.
Nano Letters | 2012
Daniel J. Callahan; Wenge Liu; Xinghai Li; Matthew R. Dreher; Wafa Hassouneh; Minkyu Kim; Piotr E. Marszalek; Ashutosh Chilkoti
To address the limited tumor penetration of nanoparticle drug delivery vehicles, we report the first pH-responsive polypeptide micelle that dissociates at the low extracellular pH of solid tumors. This histidine-rich elastin-like polypeptide block copolymer self-assembles at 37 °C into spherical micelles that are stabilized by Zn(2+) and are disrupted as the pH drops from 7.4 to 6.4. These pH-sensitive micelles demonstrate better in vivo penetration and distribution in tumors than a pH-insensitive control.
Journal of Controlled Release | 2011
Andrew J. Simnick; Miriam Amiram; Wenge Liu; Gabi Hanna; Mark W. Dewhirst; Christopher D. Kontos; Ashutosh Chilkoti
Antivascular targeting is a promising strategy for tumor therapy. This strategy has the potential to overcome many of the transport barriers associated with targeting tumor cells in solid tumors, because the tumor vasculature is directly accessible to targeting vehicles in systemic circulation. We report a novel nanoscale delivery system consisting of multivalent polymer micelles to target receptors that are preferentially upregulated in the tumor vasculature and perivascular cells, specifically CD13. To this end we utilized amphiphilic block copolymers, composed of a genetically engineered elastin-like polypeptide (ELP) that self-assemble into monodisperse spherical micelles. These polymer micelles were functionalized by incorporating the NGR tripeptide ligand, which targets the CD13 receptor, on their corona. We examined the self-assembly and in vivo tumor targeting by these NGR-functionalized nanoparticles and show that multivalent presentation of NGR by micelle self-assembly selectively targets the tumor vasculature by targeting CD13. Furthermore, we show greater vascular retention and extravascular accumulation of nanoparticles in tumor tissue compared to normal tissue, although the enhancement is modest. These results suggest that enhanced delivery to solid tumors can be achieved by targeting upregulated receptors in the tumor vasculature with multivalent ligand-presenting nanoparticles, but additional work is required to optimize such systems for multivalent targeting.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Weiping Gao; Wenge Liu; J. Andrew MacKay; Michael R. Zalutsky; Eric J. Toone; Ashutosh Chilkoti
The challenge in the synthesis of protein-polymer conjugates for biological applications is to synthesize a stoichiometric (typically 1:1) conjugate of the protein with a monodisperse polymer, with good retention of protein activity, significantly improved pharmacokinetics and increased bioavailability, and hence improved in vivo efficacy. Here we demonstrate, using myoglobin as an example, a general route to grow a PEG-like polymer, poly(oligo(ethylene glycol) methyl ether methacrylate) [poly(OEGMA)], with low polydispersity and high yield, solely from the N-terminus of the protein by in situ atom transfer radical polymerization (ATRP) under aqueous conditions, to yield a site-specific (N-terminal) and stoichiometric conjugate (1:1). Notably, the myoglobin-poly(OEGMA) conjugate [hydrodynamic radius (Rh): 13 nm] showed a 41-fold increase in its blood exposure compared to the protein (Rh: 1.7 nm) after IV administration to mice, thereby demonstrating that comb polymers that present short oligo(ethylene glycol) side chains are a class of PEG-like polymers that can significantly improve the pharmacological properties of proteins. We believe that this approach to the synthesis of N-terminal protein conjugates of poly(OEGMA) may be applicable to a large subset of protein and peptide drugs, and thereby provide a general methodology for improvement of their pharmacological profiles.
Cancer Research | 2007
Matthew R. Dreher; Wenge Liu; Charles R. Michelich; Mark W. Dewhirst; Ashutosh Chilkoti
The delivery of anticancer therapeutics to solid tumors remains a critical problem in the treatment of cancer. This study reports a new methodology to target a temperature-responsive macromolecular drug carrier, an elastin-like polypeptide (ELP) to solid tumors. Using a dorsal skin fold window chamber model and intravital laser scanning confocal microscopy, we show that the ELP forms micron-sized aggregates that adhere to the tumor vasculature only when tumors are heated to 41.5 degrees C. Upon return to normothermia, the vascular particles dissolve into the plasma, increasing the vascular concentration, which drives more ELPs across the tumor blood vessel and significantly increases its extravascular accumulation. These observations suggested that thermal cycling of tumors would increase the exposure of tumor cells to ELP drug carriers. We investigated this hypothesis in this study by thermally cycling an implanted tumor in nude mice from body temperature to 41.5 degrees C thrice within 1.5 h, and showed the repeated formation of adherent microparticles of ELP in the heated tumor vasculature in each thermal cycle. These results suggest that thermal cycling of tumors can be repeated multiple times to further increase the accumulation of a thermally responsive polymeric drug carrier in solid tumors over a single heat-cool cycle. More broadly, this study shows a new approach--tumor thermal cycling--to exploit stimuli-responsive polymers in vivo to target the tumor vasculature or extravascular compartment with high specificity.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Weiping Gao; Wenge Liu; Trine Christensen; Michael R. Zalutsky; Ashutosh Chilkoti
This paper reports a general in situ method to grow a polymer conjugate solely from the C terminus of a recombinant protein. GFP was fused at its C terminus with an intein; cleavage of the intein provided a unique thioester moiety at the C terminus of GFP that was used to install an atom transfer radical polymerization (ATRP) initiator. Subsequent in situ ATRP of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) yielded a site-specific (C-terminal) and stoichiometric conjugate with high yield and good retention of protein activity. A GFP-C-poly(OEGMA) conjugate (hydrodynamic radius (Rh): 21 nm) showed a 15-fold increase in its blood exposure compared to the protein (Rh: 3.0 nm) after intravenous administration to mice. This conjugate also showed a 50-fold increase in tumor accumulation, 24 h after intravenous administration to tumor-bearing mice, compared to the unmodified protein. This approach for in situ C-terminal polymer modification of a recombinant protein is applicable to a large subset of recombinant protein and peptide drugs and provides a general methodology for improvement of their pharmacological profiles.
Journal of Controlled Release | 2010
Wenge Liu; J. Andrew MacKay; Matthew R. Dreher; Mingnan Chen; Jonathan R. McDaniel; Andrew J. Simnick; Daniel J. Callahan; Michael R. Zalutsky; Ashutosh Chilkoti
This study evaluated a biodegradable drug delivery system for local cancer radiotherapy consisting of a thermally sensitive elastin-like polypeptide (ELP) conjugated to a therapeutic radionuclide. Two ELPs (49 kDa) were synthesized using genetic engineering to test the hypothesis that injectable biopolymeric depots can retain radionuclides locally and reduce the growth of tumors. A thermally sensitive polypeptide, ELP(1), was designed to spontaneously undergo a soluble-insoluble phase transition (forming viscous microparticles) between room temperature and body temperature upon intratumoral injection, while ELP(2) was designed to remain soluble upon injection and to serve as a negative control for the effect of aggregate assembly. After intratumoral administration of radionuclide conjugates of ELPs into implanted tumor xenografts in nude mice, their retention within the tumor, spatio-temporal distribution, and therapeutic effect were quantified. The residence time of the radionuclide-ELP(1) in the tumor was significantly longer than the thermally insensitive ELP(2) conjugate. In addition, the thermal transition of ELP(1) significantly protected the conjugated radionuclide from dehalogenation, whereas the conjugated radionuclide on ELP(2) was quickly eliminated from the tumor and cleaved from the biopolymer. These attributes of the thermally sensitive ELP(1) depot improved the antitumor efficacy of iodine-131 compared to the soluble ELP(2) control. This novel injectable and biodegradable depot has the potential to control advanced-stage cancers by reducing the bulk of inoperable tumors, enabling surgical removal of de-bulked tumors, and preserving healthy tissues.
Angewandte Chemie | 2015
Jinyao Liu; Wenge Liu; Isaac Weitzhandler; Jayanta Bhattacharyya; Xinghai Li; Jing Wang; Yizhi Qi; Somnath Bhattacharjee; Ashutosh Chilkoti
The synthesis of polymer-drug conjugates from prodrug monomers consisting of a cyclic polymerizable group that is appended to a drug through a cleavable linker is achieved by organocatalyzed ring-opening polymerization. The monomers polymerize into well-defined polymer prodrugs that are designed to self-assemble into nanoparticles and release the drug in response to a physiologically relevant stimulus. This method is compatible with structurally diverse drugs and allows different drugs to be copolymerized with quantitative conversion of the monomers. The drug loading can be controlled by adjusting the monomer(s)/initiator feed ratio and drug release can be encoded into the polymer by the choice of linker. Initiating these monomers from a poly(ethylene glycol) macroinitiator results in amphiphilic diblock copolymers that spontaneously self-assemble into micelles with a long plasma circulation, which is useful for systemic therapy.
Biomaterials | 2012
Daisuke Asai; Donghua Xu; Wenge Liu; Felipe García Quiroz; Daniel J. Callahan; Michael R. Zalutsky; Stephen L. Craig; Ashutosh Chilkoti
Protein-based biomaterials are an important class of materials for applications in biotechnology and medicine. The exquisite control of their composition, stereochemistry, and chain length offers unique opportunities to engineer biofunctionality, biocompatibility, and biodegradability into these materials. Here, we report the synthesis of a thermally responsive peptide polymer-based hydrogel composed of a recombinant elastin-like polypeptide (ELP) that rapidly forms a reversibly cross-linked hydrogel by the formation of intermolecular disulfide cross-links. To do so, we designed and synthesized ELPs that incorporate periodic cysteine residues (cELPs), and show that cELPs are thermally responsive protein polymers that display rapid gelation under physiologically relevant, mild oxidative conditions. Gelation of cELPs, at concentrations as low as 2.5 wt%, occurs in ≈ 2.5 min upon addition a low concentration of hydrogen peroxide (0.3 wt%). We show the utility of these hydrogels for the sustained release of a model protein in vitro, and demonstrate the ability of this injectable biomaterial to pervade tumors to maximize tumor coverage and retention time upon intratumoral injection. cELPs represent a new class of injectable reversibly cross-linked hydrogels with properties intermediate between ELP coacervates and chemically cross-linked ELP hydrogels that will find useful applications in drug delivery and tissue engineering.
Nature Biomedical Engineering | 2016
Yizhi Qi; Antonina Simakova; Nancy J. Ganson; Xinghai Li; Kelli M. Luginbuhl; Imran Ozer; Wenge Liu; Michael S. Hershfield; Krzysztof Matyjaszewski; Ashutosh Chilkoti
The delivery of therapeutic peptides and proteins is often challenged by a short half-life, and thus the need for frequent injections that limit efficacy, reduce patient compliance and increase treatment cost. Here, we demonstrate that a single subcutaneous injection of site-specific (C-terminal) conjugates of exendin-4 (exendin) — a therapeutic peptide that is clinically used to treat type 2 diabetes — and poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA) with precisely controlled molecular weights lowered blood glucose for up to 120 h in fed mice. Most notably, we show that an exendin-C-POEGMA conjugate with an average of 9 side-chain ethylene glycol (EG) repeats exhibits significantly lower reactivity towards patient-derived anti-poly(ethylene glycol) (PEG) antibodies than two FDA-approved PEGylated drugs, and that reducing the side-chain length to 3 EG repeats completely eliminates PEG antigenicity without compromising in vivo efficacy. Our findings establish the site-specific conjugation of POEGMA as a next-generation PEGylation technology for improving the pharmacological performance of traditional PEGylated drugs, whose safety and efficacy are hindered by pre-existing anti-PEG antibodies in patients.