Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan Richard is active.

Publication


Featured researches published by Jonathan Richard.


Blood | 2010

HIV-1 Vpr up-regulates expression of ligands for the activating NKG2D receptor and promotes NK cell–mediated killing

Jonathan Richard; Sardar Sindhu; Tram Pham; Jean-Philippe Belzile; Éric A. Cohen

HIV up-regulates cell-surface expression of specific ligands for the activating NKG2D receptor, including ULBP-1, -2, and -3, but not MICA or MICB, in infected cells both in vitro and in vivo. However, the viral factor(s) involved in NKG2D ligand expression still remains undefined. HIV-1 Vpr activates the DNA damage/stress-sensing ATR kinase and promotes G(2) cell-cycle arrest, conditions known to up-regulate NKG2D ligands. We report here that HIV-1 selectively induces cell-surface expression of ULBP-2 in primary CD4(+) T lymphocytes by a process that is Vpr dependent. Importantly, Vpr enhanced the susceptibility of HIV-1-infected cells to NK cell-mediated killing. Strikingly, Vpr alone was sufficient to up-regulate expression of all NKG2D ligands and thus promoted efficient NKG2D-dependent NK cell-mediated killing. Delivery of virion-associated Vpr via defective HIV-1 particles induced analogous biologic effects in noninfected target cells, suggesting that Vpr may act similarly beyond infected cells. All these activities relied on Vpr ability to activate the ATR-mediated DNA damage/stress checkpoint. Overall, these results indicate that Vpr is a key determinant responsible for HIV-1-induced up-regulation of NKG2D ligands and further suggest an immunomodulatory role for Vpr that may not only contribute to HIV-1-induced CD4(+) T-lymphocyte depletion but may also take part in HIV-1-induced NK-cell dysfunction.


Journal of Virology | 2015

The HIV-1 gp120 CD4-Bound Conformation Is Preferentially Targeted by Antibody-Dependent Cellular Cytotoxicity-Mediating Antibodies in Sera from HIV-1-Infected Individuals

Maxime Veillette; Mathieu Coutu; Jonathan Richard; Laurie-Anne Batraville; Olina Dagher; Nicole F. Bernard; Cécile Tremblay; Daniel E. Kaufmann; Michel Roger; Andrés Finzi

ABSTRACT Recent studies have linked antibody Fc-mediated effector functions with protection or control of human immunodeficiency type 1 (HIV-1) and simian immunodeficiency (SIV) infections. Interestingly, the presence of antibodies with potent antibody-dependent cellular cytotoxicity (ADCC) activity in the Thai RV144 vaccine trial was suggested to correlate with decreased HIV-1 acquisition risk. These antibodies recently were found to recognize HIV envelope (Env) epitopes exposed upon Env-CD4 interaction. CD4 downregulation by Nef and Vpu, as well as Vpu-mediated BST-2 antagonism, were reported to modulate exposure of those CD4-induced HIV-1 Env epitopes and were proposed to play a role in reducing the susceptibility of infected cells to ADCC mediated by this class of antibodies. Here, we report the high prevalence of antibodies recognizing CD4-induced HIV-1 Env epitopes in sera from HIV-1-infected individuals, which correlated with their ability to mediate ADCC responses against HIV-1-infected cells, exposing these Env epitopes at the cell surface. Furthermore, our results indicate that Env variable regions V1, V2, V3, and V5 do not represent a major determinant for ADCC responses mediated by sera from HIV-1-infected individuals. Altogether, these findings suggest that HIV-1 tightly controls the exposure of certain Env epitopes at the surface of infected cells in order to prevent elimination by Fc-effector functions. IMPORTANCE Here, we identified a particular conformation of HIV-1 Env that is specifically targeted by ADCC-mediating antibodies present in sera from HIV-1-infected individuals. This observation suggests that HIV-1 developed sophisticated mechanisms to minimize the exposure of these epitopes at the surface of infected cells.


Proceedings of the National Academy of Sciences of the United States of America | 2015

CD4 mimetics sensitize HIV-1-infected cells to ADCC

Jonathan Richard; Maxime Veillette; Nathalie Brassard; Shilpa S. Iyer; Michel Roger; Loïc Martin; Marzena Pazgier; Arne Schön; Ernesto Freire; Jean-Pierre Routy; Amos B. Smith; Jongwoo Park; David M. Jones; Joel R. Courter; Bruno Melillo; Daniel E. Kaufmann; Beatrice H. Hahn; Sallie R. Permar; Barton F. Haynes; Navid Madani; Joseph Sodroski; Andrés Finzi

Significance The prevention of HIV-1 transmission and progression likely requires approaches that can specifically eliminate HIV-1-infected cells. Rationally designed CD4-mimetic compounds (CD4mc) have been shown to efficiently inhibit viral entry and sensitize HIV-1 particles to neutralization by otherwise nonneutralizing CD4-induced antibodies. Here we found that CD4mc can also sensitize HIV-1-infected cells to antibody-dependent cell-mediated cytotoxicity (ADCC). Indeed, CD4mc induced the CD4-bound conformation of HIV-1 envelope glycoproteins, exposing CD4-induced epitopes recognized by easy-to-elicit antibodies present in sera, cervicovaginal lavages, and breast milk from HIV-1-infected individuals. Importantly, we provide evidence that CD4mc can efficiently sensitize primary CD4 T cells from HIV-1-infected individuals to ADCC mediated by autologous sera and effector cells. Therefore, CD4mc might represent an attractive approach to prevent and control HIV-1 infection. HIV-1-infected cells presenting envelope glycoproteins (Env) in the CD4-bound conformation on their surface are preferentially targeted by antibody-dependent cell-mediated cytotoxicity (ADCC). HIV-1 has evolved a sophisticated mechanism to avoid exposure of ADCC-mediating Env epitopes by down-regulating CD4 and by limiting the overall amount of Env at the cell surface. Here we report that small-molecule CD4-mimetic compounds induce the CD4-bound conformation of Env, and thereby sensitize cells infected with primary HIV-1 isolates to ADCC mediated by antibodies present in sera, cervicovaginal lavages, and breast milk from HIV-1-infected individuals. Importantly, we identified one CD4 mimetic with the capacity to sensitize endogenously infected ex vivo-amplified primary CD4 T cells to ADCC killing mediated by autologous sera and effector cells. Thus, CD4 mimetics hold the promise of therapeutic utility in preventing and controlling HIV-1 infection.


Journal of Virology | 2010

HIV-1 Vpr Induces the K48-Linked Polyubiquitination and Proteasomal Degradation of Target Cellular Proteins To Activate ATR and Promote G2 Arrest

Jean-Philippe Belzile; Jonathan Richard; Nicole Rougeau; Yong Xiao; Éric A. Cohen

ABSTRACT HIV-1 viral protein R (Vpr) induces cell cycle arrest at the G2/M phase by a mechanism involving the activation of the DNA damage sensor ATR. We and others recently showed that Vpr performs this function by subverting the activity of the DDB1-CUL4A (VPRBP) E3 ubiquitin ligase. Vpr could thus act as a connector between the E3 ligase and an unknown cellular factor whose ubiquitination would induce G2 arrest. While attractive, this model is based solely on the indirect observation that some mutants of Vpr retain their interaction with the E3 ligase but fail to induce G2 arrest. Using a tandem affinity purification approach, we observed that Vpr interacts with ubiquitinated cellular proteins and that this association requires the recruitment of an active E3 ligase given that the depletion of VPRBP by RNA interference or the overexpression of a dominant negative mutant of CUL4A decreased this association. Importantly, G2-arrest-defective mutants of Vpr in the C-terminal putative substrate-interacting domain displayed a decreased association with ubiquitinated proteins. We also found that the inhibition of proteasomal activity increased this association and that the ubiquitin chains were at least in part constituted of classical K48 linkages. Interestingly, the inhibition of K48 polyubiquitination specifically impaired the Vpr-induced phosphorylation of H2AX, an early target of ATR, but did not affect UV-induced H2AX phosphorylation. Overall, our results provide direct evidence that the association of Vpr with the DDB1-CUL4A (VPRBP) E3 ubiquitin ligase induces the K48-linked polyubiquitination of as-yet-unknown cellular proteins, resulting in their proteasomal degradation and ultimately leading to the activation of ATR and G2 arrest.


Journal of Virological Methods | 2014

Flow cytometry-based assay to study HIV-1 gp120 specific antibody-dependent cellular cytotoxicity responses.

Jonathan Richard; Maxime Veillette; Laurie-Anne Batraville; Mathieu Coutu; Jean-Philippe Chapleau; Mattia Bonsignori; Nicole F. Bernard; Cécile Tremblay; Michel Roger; Daniel E. Kaufmann; Andrés Finzi

Increased attention on the role of Fc-mediated effector functions against HIV-1 has led to renewed interest into the role that antibody-dependent cellular cytotoxicity (ADCC) could play in controlling viral transmission and/or the rate of disease progression. While (51)Chromium release assays have traditionally been used to study ADCC responses against HIV-1, a number of alternative flow-cytometry-based assays were recently developed. In this study, an alternative flow-cytometry-based assay was established to allow non-radioactive measurement of ADCC-mediated elimination of HIV-1 gp120 envelope glycoprotein (Env)-coated target cells. This assay relies on staining target and effector cells with different dyes, which allows precise gating and permits the calculation of the number of surviving target cells by normalization to flow-cytometry particles. By using small concentrations of recombinant gp120 Env, suitable targets cells that recapitulate the ADCC response mediated against HIV-1-infected cells were generated. Finally, this method was applied successfully to screen human sera for ADCC activity directed against HIV-1 gp120 Env.


Nature Chemical Biology | 2014

A broad HIV-1 inhibitor blocks envelope glycoprotein transitions critical for entry

Christopher Gu; Nicole Espy; Jonathan Richard; Andrés Finzi; Joseph Sodroski

Binding to the primary receptor, CD4, triggers conformational changes in the metastable envelope glycoprotein (Env) trimer (gp1203/gp413) of human immunodeficiency virus (HIV-1) that are important for virus entry into host cells. These changes include an “opening” of the trimer, creation of a binding site for the CCR5 coreceptor, and formation/exposure of a gp41 coiled coil. Here we identify a new compound, 18A (1), that specifically inhibits the entry of a wide range of HIV-1 isolates. 18A does not interfere with CD4 or CCR5 binding, but inhibits the CD4-induced disruption of quaternary structures at the trimer apex and the formation/exposure of the gp41 HR1 coiled coil. Analysis of HIV-1 variants exhibiting increased or reduced sensitivity to 18A suggests that the inhibitor can distinguish distinct conformational states of gp120 in the unliganded Env trimer. The broad-range activity and observed hypersensitivity of resistant mutants to antibody neutralization support further investigation of 18A.


Journal of Virology | 2015

Slaying the Trojan Horse: Natural Killer Cells Exhibit Robust Anti-HIV-1 Antibody-Dependent Activation and Cytolysis against Allogeneic T Cells

Shayarana L. Gooneratne; Jonathan Richard; Wen Shi Lee; Andrés Finzi; Stephen J. Kent; Matthew S. Parsons

ABSTRACT Many attempts to design prophylactic human immunodeficiency virus type 1 (HIV-1) vaccines have focused on the induction of neutralizing antibodies (Abs) that block infection by free virions. Despite the focus on viral particles, virus-infected cells, which can be found within mucosal secretions, are more infectious than free virus both in vitro and in vivo. Furthermore, assessment of human transmission couples suggests infected seminal lymphocytes might be responsible for a proportion of HIV-1 transmissions. Although vaccines that induce neutralizing Abs are sought, only some broadly neutralizing Abs efficiently block cell-to-cell transmission of HIV-1. As HIV-1 vaccines need to elicit immune responses capable of controlling both free and cell-associated virus, we evaluated the potential of natural killer (NK) cells to respond in an Ab-dependent manner to allogeneic T cells bearing HIV-1 antigens. This study presents data measuring Ab-dependent anti-HIV-1 NK cell responses to primary and transformed allogeneic T-cell targets. We found that NK cells are robustly activated in an anti-HIV-1 Ab-dependent manner against allogeneic targets and that tested target cells are subject to Ab-dependent cytolysis. Furthermore, the educated KIR3DL1+ NK cell subset from HLA-Bw4+ individuals exhibits an activation advantage over the KIR3DL1− subset that contains both NK cells educated through other receptor/ligand combinations and uneducated NK cells. These results are intriguing and important for understanding the regulation of Ab-dependent NK cell responses and are potentially valuable for designing Ab-dependent therapies and/or vaccines. IMPORTANCE NK cell-mediated anti-HIV-1 antibody-dependent functions have been associated with protection from infection and disease progression; however, their role in protecting from infection with allogeneic cells infected with HIV-1 is unknown. We found that HIV-1-specific ADCC antibodies bound to allogeneic cells infected with HIV-1 or coated with HIV-1 gp120 were capable of activating NK cells and/or trigging cytolysis of the allogeneic target cells. This suggests ADCC may be able to assist in preventing infection with cell-associated HIV-1. In order to fully utilize NK cell-mediated Ab-dependent effector functions, it might also be important that educated NK cells, which hold the highest activation potential, can become activated against targets bearing HIV-1 antigens and expressing the ligands for self-inhibitory receptors. Here, we show that with Ab-dependent stimulation, NK cells expressing inhibitory receptors can mediate robust activation against targets expressing the ligands for those receptors.


Current HIV Research | 2015

Role of HIV-1 Envelope Glycoproteins Conformation and Accessory Proteins on ADCC Responses

Maxime Veillette; Jonathan Richard; Marzena Pazgier; George K. Lewis; Matthew S. Parsons; Andrés Finzi

The role of antibody Fc-mediated effector functions in controlling or preventing infections by human immunodeficiency type 1 (HIV-1) and simian immunodeficiency (SIV) viruses has been recently highlighted in multiple studies. One of those effector functions, antibody-dependent cellular cytotoxicity (ADCC) was suggested as correlating with decreased HIV-1 acquisition risk in the recent Thai RV144 vaccine trial. RV144-elicited antibodies with potent ADCC activity were recently found to recognize HIV envelope (Env) epitopes exposed upon Env-CD4 interaction. However, HIV-1 efficiently limits the exposure of those epitopes by strongly downregulating CD4 by both Nef and Vpu accessory proteins, as well as indirectly preventing the accumulation of Env at the cell surface by Vpu-mediated BST-2 antagonism. These accessory proteins were thus proposed to play a critical role in decreasing the susceptibility of HIV-infected cells to elimination by ADCC. In this review we will summarize these recent findings and discuss the critical role that HIV-1 envelope glycoproteins conformation plays on ADCC responses, how these responses can be measured in the laboratory, the role of HIV-1-transmission on ADCC responses and how this knowledge can be used to develop new strategies aimed at targeting HIV-1-infected cells.


EBioMedicine | 2016

Small CD4 Mimetics Prevent HIV-1 Uninfected Bystander CD4 + T Cell Killing Mediated by Antibody-dependent Cell-mediated Cytotoxicity

Jonathan Richard; Maxime Veillette; Shilei Ding; Daria Zoubchenok; Nirmin Alsahafi; Mathieu Coutu; Nathalie Brassard; Jongwoo Park; Joel R. Courter; Bruno Melillo; Amos B. Smith; George M. Shaw; Beatrice H. Hahn; Joseph Sodroski; Daniel E. Kaufmann; Andrés Finzi

Human immunodeficiency virus type 1 (HIV-1) infection causes a progressive depletion of CD4 + T cells. Despite its importance for HIV-1 pathogenesis, the precise mechanisms underlying CD4 + T-cell depletion remain incompletely understood. Here we make the surprising observation that antibody-dependent cell-mediated cytotoxicity (ADCC) mediates the death of uninfected bystander CD4 + T cells in cultures of HIV-1-infected cells. While HIV-1-infected cells are protected from ADCC by the action of the viral Vpu and Nef proteins, uninfected bystander CD4 + T cells bind gp120 shed from productively infected cells and are efficiently recognized by ADCC-mediating antibodies. Thus, gp120 shedding represents a viral mechanism to divert ADCC responses towards uninfected bystander CD4 + T cells. Importantly, CD4-mimetic molecules redirect ADCC responses from uninfected bystander cells to HIV-1-infected cells; therefore, CD4-mimetic compounds might have therapeutic utility in new strategies aimed at specifically eliminating HIV-1-infected cells.


Journal of Virology | 2016

Antibody-Dependent Cellular Cytotoxicity against Reactivated HIV-1-Infected Cells.

Wen Shi Lee; Jonathan Richard; Marit Lichtfuss; Amos B. Smith; Jongwoo Park; Joel R. Courter; Bruno Melillo; Joseph Sodroski; Daniel E. Kaufmann; Andrés Finzi; Matthew S. Parsons; Stephen J. Kent

ABSTRACT Lifelong antiretroviral therapy (ART) for HIV-1 does not diminish the established latent reservoir. A possible cure approach is to reactivate the quiescent genome from latency and utilize immune responses to eliminate cells harboring reactivated HIV-1. It is not known whether antibodies within HIV-1-infected individuals can recognize and eliminate cells reactivated from latency through antibody-dependent cellular cytotoxicity (ADCC). We found that reactivation of HIV-1 expression in the latently infected ACH-2 cell line elicited antibody-mediated NK cell activation but did not result in antibody-mediated killing. The lack of CD4 expression on these HIV-1 envelope (Env)-expressing cells likely resulted in poor recognition of CD4-induced antibody epitopes on Env. To examine this further, cultured primary CD4+ T cells from HIV-1+ subjects were used as targets for ADCC. These ex vivo-expanded primary cells were modestly susceptible to ADCC mediated by autologous or heterologous HIV-1+ serum antibodies. Importantly, ADCC mediated against these primary cells could be enhanced following incubation with a CD4-mimetic compound (JP-III-48) that exposes CD4-induced antibody epitopes on Env. Our studies suggest that with sufficient reactivation and expression of appropriate Env epitopes, primary HIV-1-infected cells can be targets for ADCC mediated by autologous serum antibodies and innate effector cells. The results of this study suggest that further investigation into the potential of ADCC to eliminate reactivated latently infected cells is warranted. IMPORTANCE An HIV-1 cure remains elusive due to the persistence of long-lived latently infected cells. An HIV-1 cure strategy, termed “shock and kill,” aims to reactivate HIV-1 expression in latently infected cells and subsequently eliminate the reactivated cells through immune-mediated killing. While recent research efforts have focused on reversing HIV-1 latency, it remains unclear whether preexisting immune responses within HIV-1+ individuals can efficiently eliminate the reactivated cells. HIV-1-specific antibodies can potentially eliminate cells reactivated from latency via Fc effector functions by recruiting innate immune cells. Our study highlights the potential role that antibody-dependent cellular cytotoxicity might play in antilatency cure approaches.

Collaboration


Dive into the Jonathan Richard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shilei Ding

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mathieu Coutu

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge