Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mathieu Coutu is active.

Publication


Featured researches published by Mathieu Coutu.


Journal of Virology | 2014

Interaction with Cellular CD4 Exposes HIV-1 Envelope Epitopes Targeted by Antibody-Dependent Cell-Mediated Cytotoxicity

Maxime Veillette; Anik Désormeaux; Halima Medjahed; Nour-Elhouda Gharsallah; Mathieu Coutu; Joshua Baalwa; Yongjun Guan; George K. Lewis; Guido Ferrari; Beatrice H. Hahn; Barton F. Haynes; James E. Robinson; Daniel E. Kaufmann; Mattia Bonsignori; Joseph Sodroski; Andrés Finzi

ABSTRACT Anti-HIV-1 envelope glycoprotein (Env) antibodies without broadly neutralizing activity correlated with protection in the RV144 clinical trial, stimulating interest in other protective mechanisms involving antibodies, such as antibody-dependent cell-mediated cytotoxicity (ADCC). Env epitopes targeted by many antibodies effective at mediating ADCC are poorly exposed on the unliganded Env trimer. Here we investigated the mechanism of exposure of ADCC epitopes on Env and showed that binding of Env and CD4 within the same HIV-1-infected cell effectively exposes these epitopes. Env capacity to transit to the CD4-bound conformation is required for ADCC epitope exposure. Importantly, cell surface CD4 downregulation by Nef and Vpu accessory proteins and Vpu-mediated BST-2 antagonism modulate exposure of ADCC-mediating epitopes and reduce the susceptibility of infected cells to this effector function in vitro. Significantly, Env conformational changes induced by cell surface CD4 are conserved among Env from HIV-1 and HIV-2/SIVmac lineages. Altogether, our observations describe a highly conserved mechanism required to expose ADCC epitopes that might help explain the evolutionary advantage of downregulation of cell surface CD4 by the HIV-1 Vpu and Nef proteins. IMPORTANCE HIV-1 envelope epitopes targeted by many antibodies effective at mediating antibody-dependent cell-mediated cytotoxicity (ADCC) are poorly exposed on the unliganded envelope trimer. Here we investigated the mechanism of exposure of these epitopes and found that envelope interaction with the HIV-1 CD4 receptor is required to expose some of these epitopes. Moreover, our results suggest that HIV-1 CD4 downregulation might help avoid the killing of HIV-1-infected cells by this immune mechanism.


Journal of Virology | 2015

The HIV-1 gp120 CD4-Bound Conformation Is Preferentially Targeted by Antibody-Dependent Cellular Cytotoxicity-Mediating Antibodies in Sera from HIV-1-Infected Individuals

Maxime Veillette; Mathieu Coutu; Jonathan Richard; Laurie-Anne Batraville; Olina Dagher; Nicole F. Bernard; Cécile Tremblay; Daniel E. Kaufmann; Michel Roger; Andrés Finzi

ABSTRACT Recent studies have linked antibody Fc-mediated effector functions with protection or control of human immunodeficiency type 1 (HIV-1) and simian immunodeficiency (SIV) infections. Interestingly, the presence of antibodies with potent antibody-dependent cellular cytotoxicity (ADCC) activity in the Thai RV144 vaccine trial was suggested to correlate with decreased HIV-1 acquisition risk. These antibodies recently were found to recognize HIV envelope (Env) epitopes exposed upon Env-CD4 interaction. CD4 downregulation by Nef and Vpu, as well as Vpu-mediated BST-2 antagonism, were reported to modulate exposure of those CD4-induced HIV-1 Env epitopes and were proposed to play a role in reducing the susceptibility of infected cells to ADCC mediated by this class of antibodies. Here, we report the high prevalence of antibodies recognizing CD4-induced HIV-1 Env epitopes in sera from HIV-1-infected individuals, which correlated with their ability to mediate ADCC responses against HIV-1-infected cells, exposing these Env epitopes at the cell surface. Furthermore, our results indicate that Env variable regions V1, V2, V3, and V5 do not represent a major determinant for ADCC responses mediated by sera from HIV-1-infected individuals. Altogether, these findings suggest that HIV-1 tightly controls the exposure of certain Env epitopes at the surface of infected cells in order to prevent elimination by Fc-effector functions. IMPORTANCE Here, we identified a particular conformation of HIV-1 Env that is specifically targeted by ADCC-mediating antibodies present in sera from HIV-1-infected individuals. This observation suggests that HIV-1 developed sophisticated mechanisms to minimize the exposure of these epitopes at the surface of infected cells.


Journal of Virological Methods | 2014

Flow cytometry-based assay to study HIV-1 gp120 specific antibody-dependent cellular cytotoxicity responses.

Jonathan Richard; Maxime Veillette; Laurie-Anne Batraville; Mathieu Coutu; Jean-Philippe Chapleau; Mattia Bonsignori; Nicole F. Bernard; Cécile Tremblay; Michel Roger; Daniel E. Kaufmann; Andrés Finzi

Increased attention on the role of Fc-mediated effector functions against HIV-1 has led to renewed interest into the role that antibody-dependent cellular cytotoxicity (ADCC) could play in controlling viral transmission and/or the rate of disease progression. While (51)Chromium release assays have traditionally been used to study ADCC responses against HIV-1, a number of alternative flow-cytometry-based assays were recently developed. In this study, an alternative flow-cytometry-based assay was established to allow non-radioactive measurement of ADCC-mediated elimination of HIV-1 gp120 envelope glycoprotein (Env)-coated target cells. This assay relies on staining target and effector cells with different dyes, which allows precise gating and permits the calculation of the number of surviving target cells by normalization to flow-cytometry particles. By using small concentrations of recombinant gp120 Env, suitable targets cells that recapitulate the ADCC response mediated against HIV-1-infected cells were generated. Finally, this method was applied successfully to screen human sera for ADCC activity directed against HIV-1 gp120 Env.


Journal of Virology | 2013

The Highly-Conserved Layer 3 Component of the HIV-1 gp120 Inner Domain is Critical for CD4-required Conformational Transitions.

Anik Désormeaux; Mathieu Coutu; Halima Medjahed; Beatriz Pacheco; Christopher Gu; Shi Hua Xiang; Youdong Mao; Joseph Sodroski; Andrés Finzi

ABSTRACT The trimeric envelope glycoprotein (Env) of human immunodeficiency virus type 1 (HIV-1) mediates virus entry into host cells. CD4 engagement with the gp120 exterior envelope glycoprotein subunit represents the first step during HIV-1 entry. CD4-induced conformational changes in the gp120 inner domain involve three potentially flexible topological layers (layers 1, 2, and 3). Structural rearrangements between layer 1 and layer 2 have been shown to facilitate the transition of the envelope glycoprotein trimer from the unliganded to the CD4-bound state and to stabilize gp120-CD4 interaction. However, our understanding of CD4-induced conformational changes in the gp120 inner domain remains incomplete. Here, we report that a highly conserved element of the gp120 inner domain, layer 3, plays a pivot-like role in these allosteric changes. In the unliganded state, layer 3 modulates the association of gp120 with the Env trimer, probably by influencing the relationship of the gp120 inner and outer domains. Importantly, layer 3 governs the efficiency of the initial gp120 interaction with CD4, a function that can also be fulfilled by filling the Phe43 cavity. This work defines the functional importance of layer 3 and completes a picture detailing the role of the gp120 inner domain in CD4-induced conformational transitions in the HIV-1 Env trimer.


Journal of Virology | 2016

A Highly Conserved Residue of the HIV-1 gp120 Inner Domain Is Important for Antibody-Dependent Cellular Cytotoxicity Responses Mediated by Anti-cluster A Antibodies

Shilei Ding; Maxime Veillette; Mathieu Coutu; Jérémie Prévost; Louise Scharf; Pamela J. Bjorkman; Guido Ferrari; James E. Robinson; Christina M. Stürzel; Beatrice H. Hahn; Daniel Sauter; Frank Kirchhoff; George K. Lewis; Marzena Pazgier; Andrés Finzi

ABSTRACT Previous studies have shown that sera from HIV-1-infected individuals contain antibodies able to mediate antibody-dependent cellular cytotoxicity (ADCC). These antibodies preferentially recognize envelope glycoprotein (Env) epitopes induced upon CD4 binding. Here, we show that a highly conserved tryptophan at position 69 of the gp120 inner domain is important for ADCC mediated by anti-cluster A antibodies and sera from HIV-1-infected individuals.


EBioMedicine | 2016

Small CD4 Mimetics Prevent HIV-1 Uninfected Bystander CD4 + T Cell Killing Mediated by Antibody-dependent Cell-mediated Cytotoxicity

Jonathan Richard; Maxime Veillette; Shilei Ding; Daria Zoubchenok; Nirmin Alsahafi; Mathieu Coutu; Nathalie Brassard; Jongwoo Park; Joel R. Courter; Bruno Melillo; Amos B. Smith; George M. Shaw; Beatrice H. Hahn; Joseph Sodroski; Daniel E. Kaufmann; Andrés Finzi

Human immunodeficiency virus type 1 (HIV-1) infection causes a progressive depletion of CD4 + T cells. Despite its importance for HIV-1 pathogenesis, the precise mechanisms underlying CD4 + T-cell depletion remain incompletely understood. Here we make the surprising observation that antibody-dependent cell-mediated cytotoxicity (ADCC) mediates the death of uninfected bystander CD4 + T cells in cultures of HIV-1-infected cells. While HIV-1-infected cells are protected from ADCC by the action of the viral Vpu and Nef proteins, uninfected bystander CD4 + T cells bind gp120 shed from productively infected cells and are efficiently recognized by ADCC-mediating antibodies. Thus, gp120 shedding represents a viral mechanism to divert ADCC responses towards uninfected bystander CD4 + T cells. Importantly, CD4-mimetic molecules redirect ADCC responses from uninfected bystander cells to HIV-1-infected cells; therefore, CD4-mimetic compounds might have therapeutic utility in new strategies aimed at specifically eliminating HIV-1-infected cells.


EBioMedicine | 2016

Co-receptor Binding Site Antibodies Enable CD4-Mimetics to Expose Conserved Anti-cluster A ADCC Epitopes on HIV-1 Envelope Glycoproteins

Jonathan Richard; Beatriz Pacheco; Neelakshi Gohain; Maxime Veillette; Shilei Ding; Nirmin Alsahafi; William D. Tolbert; Jérémie Prévost; Jean-Philippe Chapleau; Mathieu Coutu; Manxue Jia; Nathalie Brassard; Jongwoo Park; Joel R. Courter; Bruno Melillo; Loïc Martin; Cécile Tremblay; Beatrice H. Hahn; Daniel E. Kaufmann; Xueling Wu; Amos B. Smith; Joseph Sodroski; Marzena Pazgier; Andrés Finzi

Human immunodeficiency virus type 1 (HIV-1) has evolved a sophisticated strategy to conceal conserved epitopes of its envelope glycoproteins (Env) recognized by antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies. These antibodies, which are present in the sera of most HIV-1-infected individuals, preferentially recognize Env in its CD4-bound conformation. Accordingly, recent studies showed that small CD4-mimetics (CD4mc) able to “push” Env into this conformation sensitize HIV-1-infected cells to ADCC mediated by HIV + sera. Here we test whether CD4mc also expose epitopes recognized by anti-cluster A monoclonal antibodies such as A32, thought to be responsible for the majority of ADCC activity present in HIV + sera and linked to decreased HIV-1 transmission in the RV144 trial. We made the surprising observation that CD4mc are unable to enhance recognition of HIV-1-infected cells by this family of antibodies in the absence of antibodies such as 17b, which binds a highly conserved CD4-induced epitope overlapping the co-receptor binding site (CoRBS). Our results indicate that CD4mc initially open the trimeric Env enough to allow the binding of CoRBS antibodies but not anti-cluster A antibodies. CoRBS antibody binding further opens the trimeric Env, allowing anti-cluster A antibody interaction and sensitization of infected cells to ADCC. Therefore, ADCC responses mediated by cluster A antibodies in HIV-positive sera involve a sequential opening of the Env trimer on the surface of HIV-1-infected cells. The understanding of the conformational changes required to expose these vulnerable Env epitopes might be important in the design of new strategies aimed at fighting HIV-1.


Journal of Visualized Experiments | 2014

Conformational Evaluation of HIV-1 Trimeric Envelope Glycoproteins Using a Cell-based ELISA Assay

Maxime Veillette; Mathieu Coutu; Jonathan Richard; Laurie-Anne Batraville; Anik Désormeaux; Michel Roger; Andrés Finzi

HIV-1 envelope glycoproteins (Env) mediate viral entry into target cells and are essential to the infectious cycle. Understanding how those glycoproteins are able to fuel the fusion process through their conformational changes could lead to the design of better, more effective immunogens for vaccine strategies. Here we describe a cell-based ELISA assay that allows studying the recognition of trimeric HIV-1 Env by monoclonal antibodies. Following expression of HIV-1 trimeric Env at the surface of transfected cells, conformation specific anti-Env antibodies are incubated with the cells. A horseradish peroxidase-conjugated secondary antibody and a simple chemiluminescence reaction are then used to detect bound antibodies. This system is highly flexible and can detect Env conformational changes induced by soluble CD4 or cellular proteins. It requires minimal amount of material and no highly-specialized equipment or know-how. Thus, this technique can be established for medium to high throughput screening of antigens and antibodies, such as newly-isolated antibodies.


Journal of Virological Methods | 2015

HIV-1 gp120 dimers decrease the overall affinity of gp120 preparations for CD4-induced ligands

Mathieu Coutu; Andrés Finzi

For several years, tools to study the conformational changes of HIV-1 envelope glycoproteins have been developed in order to comprehend those changes and their role in the fusion process and immunogenicity of HIV-1. To facilitate these studies, expression of the HIV-1 gp120 envelope glycoprotein has been done in several over-expression settings. However, over-expression of HIV-1 gp120 in mammalian cells leads to the formation of aberrant disulfide-linked dimers that can bias the results of experiments aimed at measuring gp120 affinity with different ligands. The presence of these gp120 dimers, generated in a widely used gp120 expression system, affects the affinity of gp120 for CD4-induced ligands, as evaluated by surface plasmon resonance. Upon monomeric gp120 purification, neither the removal of potential glycosylation sites on V4 nor the removal of the V5 variable region affect the overall affinity of gp120 for 17b and A32 CD4-induced ligands. Removal of these aberrant disulfide-linked gp120 dimers by standard size exclusion chromatography is sufficient to restore the overall affinity of gp120 preparations for these ligands.


Journal of Virology | 2017

Influence of the Envelope Gp120 Phe 43 Cavity on HIV-1 Sensitivity to ADCC Responses

Jérémie Prévost; Daria Zoubchenok; Jonathan Richard; Maxime Veillette; Beatriz Pacheco; Mathieu Coutu; Nathalie Brassard; Matthew S. Parsons; Kiat Ruxrungtham; Torsak Bunupuradah; Sodsai Tovanabutra; Kwan-Ki Hwang; M. Anthony Moody; Barton F. Haynes; Mattia Bonsignori; Joseph Sodroski; Daniel E. Kaufmann; George M. Shaw; Agnès Laurence Chenine; Andrés Finzi

ABSTRACT HIV-1-infected cells presenting envelope glycoproteins (Env) in the CD4-bound conformation on their surface are preferentially targeted by antibody-dependent cellular-mediated cytotoxicity (ADCC). HIV-1 has evolved sophisticated mechanisms to avoid the exposure of Env ADCC epitopes by downregulating CD4 and by limiting the overall amount of Env on the cell surface. In HIV-1, substitution of large residues such as histidine or tryptophan for serine 375 (S375H/W) in the gp120 Phe 43 cavity, where Phe 43 of CD4 contacts gp120, results in the spontaneous sampling of an Env conformation closer to the CD4-bound state. While residue S375 is well conserved in the majority of group M HIV-1 isolates, CRF01_AE strains have a naturally occurring histidine at this position (H375). Interestingly, CRF01_AE is the predominant circulating strain in Thailand, where the RV144 trial took place. In this trial, which resulted in a modest degree of protection, ADCC responses were identified as being part of the correlate of protection. Here we investigate the influence of the Phe 43 cavity on ADCC responses. Filling this cavity with a histidine or tryptophan residue in Env with a natural serine residue at this position (S375H/W) increased the susceptibility of HIV-1-infected cells to ADCC. Conversely, the replacement of His 375 by a serine residue (H375S) within HIV-1 CRF01_AE decreased the efficiency of the ADCC response. Our results raise the intriguing possibility that the presence of His 375 in the circulating strain where the RV144 trial was held contributed to the observed vaccine efficacy. IMPORTANCE HIV-1-infected cells presenting Env in the CD4-bound conformation on their surface are preferentially targeted by ADCC mediated by HIV-positive (HIV+) sera. Here we show that the gp120 Phe 43 cavity modulates the propensity of Env to sample this conformation and therefore affects the susceptibility of infected cells to ADCC. CRF01_AE HIV-1 strains have an unusual Phe 43 cavity-filling His 375 residue, which increases the propensity of Env to sample the CD4-bound conformation, thereby increasing susceptibility to ADCC.

Collaboration


Dive into the Mathieu Coutu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shilei Ding

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Beatrice H. Hahn

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge