Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan Tyrer is active.

Publication


Featured researches published by Jonathan Tyrer.


JAMA | 2012

Association between BRCA1 and BRCA2 mutations and survival in women with invasive epithelial ovarian cancer

Kelly L. Bolton; Georgia Chenevix-Trench; Cindy Goh; Siegal Sadetzki; Susan J. Ramus; Beth Y. Karlan; Diether Lambrechts; Evelyn Despierre; Daniel Barrowdale; Lesley McGuffog; Sue Healey; Douglas F. Easton; Olga M. Sinilnikova; Javier Benitez; María J. García; Susan L. Neuhausen; Mitchell H. Gail; Patricia Hartge; Susan Peock; Debra Frost; D. Gareth Evans; Rosalind Eeles; Andrew K. Godwin; Mary B. Daly; Ava Kwong; Edmond S K Ma; Conxi Lázaro; Ignacio Blanco; Marco Montagna; Emma D'Andrea

CONTEXT Approximately 10% of women with invasive epithelial ovarian cancer (EOC) carry deleterious germline mutations in BRCA1 or BRCA2. A recent article suggested that BRCA2-related EOC was associated with an improved prognosis, but the effect of BRCA1 remains unclear. OBJECTIVE To characterize the survival of BRCA carriers with EOC compared with noncarriers and to determine whether BRCA1 and BRCA2 carriers show similar survival patterns. DESIGN, SETTING, AND PARTICIPANTS A pooled analysis of 26 observational studies on the survival of women with ovarian cancer, which included data from 1213 EOC cases with pathogenic germline mutations in BRCA1 (n = 909) or BRCA2 (n = 304) and from 2666 noncarriers recruited and followed up at variable times between 1987 and 2010 (the median year of diagnosis was 1998). MAIN OUTCOME MEASURE Five-year overall mortality. RESULTS The 5-year overall survival was 36% (95% CI, 34%-38%) for noncarriers, 44% (95% CI, 40%-48%) for BRCA1 carriers, and 52% (95% CI, 46%-58%) for BRCA2 carriers. After adjusting for study and year of diagnosis, BRCA1 and BRCA2 mutation carriers showed a more favorable survival than noncarriers (for BRCA1: hazard ratio [HR], 0.78; 95% CI, 0.68-0.89; P < .001; and for BRCA2: HR, 0.61; 95% CI, 0.50-0.76; P < .001). These survival differences remained after additional adjustment for stage, grade, histology, and age at diagnosis (for BRCA1: HR, 0.73; 95% CI, 0.64-0.84; P < .001; and for BRCA2: HR, 0.49; 95% CI, 0.39-0.61; P < .001). The BRCA1 HR estimate was significantly different from the HR estimated in the adjusted model (P for heterogeneity = .003). CONCLUSION Among patients with invasive EOC, having a germline mutation in BRCA1 or BRCA2 was associated with improved 5-year overall survival. BRCA2 carriers had the best prognosis.


Nature Genetics | 2009

A genome-wide association study identifies a new ovarian cancer susceptibility locus on 9p22.2

Honglin Song; Susan J. Ramus; Jonathan Tyrer; Kelly L. Bolton; Aleksandra Gentry-Maharaj; Eva Wozniak; Hoda Anton-Culver; Jenny Chang-Claude; Daniel W. Cramer; Richard A. DiCioccio; Thilo Dörk; Ellen L. Goode; Marc T. Goodman; Joellen M. Schildkraut; Thomas A. Sellers; Laura Baglietto; Matthias W. Beckmann; Jonathan Beesley; Jan Blaakær; Michael E. Carney; Stephen J. Chanock; Zhihua Chen; Julie M. Cunningham; Ed Dicks; Jennifer A. Doherty; Matthias Dürst; Arif B. Ekici; David Fenstermacher; Brooke L. Fridley; Graham G. Giles

Epithelial ovarian cancer has a major heritable component, but the known susceptibility genes explain less than half the excess familial risk. We performed a genome-wide association study (GWAS) to identify common ovarian cancer susceptibility alleles. We evaluated 507,094 SNPs genotyped in 1,817 cases and 2,353 controls from the UK and ∼2 million imputed SNPs. We genotyped the 22,790 top ranked SNPs in 4,274 cases and 4,809 controls of European ancestry from Europe, USA and Australia. We identified 12 SNPs at 9p22 associated with disease risk (P < 10−8). The most significant SNP (rs3814113; P = 2.5 × 10−17) was genotyped in a further 2,670 ovarian cancer cases and 4,668 controls, confirming its association (combined data odds ratio (OR) = 0.82, 95% confidence interval (CI) 0.79–0.86, Ptrend = 5.1 × 10−19). The association differs by histological subtype, being strongest for serous ovarian cancers (OR 0.77, 95% CI 0.73–0.81, Ptrend = 4.1 × 10−21).


Lancet Oncology | 2012

Independent validation of genes and polymorphisms reported to be associated with radiation toxicity: a prospective analysis study

Gillian C. Barnett; Charlotte E. Coles; Rebecca Elliott; Caroline Baynes; Craig Luccarini; Don Conroy; Jennifer S. Wilkinson; Jonathan Tyrer; Vivek Misra; Radka Platte; S. Gulliford; Matthew R. Sydes; Emma Hall; Søren M. Bentzen; David P. Dearnaley; N.G. Burnet; Paul Pharoah; Alison M. Dunning; Catharine M L West

BACKGROUND Several studies have reported associations between radiation toxicity and single nucleotide polymorphisms (SNPs) in candidate genes. Few associations have been tested in independent validation studies. This prospective study aimed to validate reported associations between genotype and radiation toxicity in a large independent dataset. METHODS 92 (of 98 attempted) SNPs in 46 genes were successfully genotyped in 1613 patients: 976 received adjuvant breast radiotherapy in the Cambridge breast IMRT trial (ISRCTN21474421, n=942) or in a prospective study of breast toxicity at the Christie Hospital, Manchester, UK (n=34). A further 637 received radical prostate radiotherapy in the MRC RT01 multicentre trial (ISRCTN47772397, n=224) or in the Conventional or Hypofractionated High Dose Intensity Modulated Radiotherapy for Prostate Cancer (CHHiP) trial (ISRCTN97182923, n=413). Late toxicity was assessed 2 years after radiotherapy with a validated photographic technique (patients with breast cancer only), clinical assessment, and patient questionnaires. Association tests of genotype with overall radiation toxicity score and individual endpoints were undertaken in univariate and multivariable analyses. At a type I error rate adjusted for multiple testing, this study had 99% power to detect a SNP, with minor allele frequency of 0·35, associated with a per allele odds ratio of 2·2. FINDINGS None of the previously reported associations were confirmed by this study, after adjustment for multiple comparisons. The p value distribution of the SNPs tested against overall toxicity score was not different from that expected by chance. INTERPRETATION We did not replicate previously reported late toxicity associations, suggesting that we can essentially exclude the hypothesis that published SNPs individually exert a clinically relevant effect. Continued recruitment of patients into studies within the Radiogenomics Consortium is essential so that sufficiently powered studies can be done and methodological challenges addressed. FUNDING Cancer Research UK, The Royal College of Radiologists, Addenbrookes Charitable Trust, Breast Cancer Campaign, Cambridge National Institute of Health Research (NIHR) Biomedical Research Centre, Experimental Cancer Medicine Centre, East Midlands Innovation, the National Cancer Institute, Joseph Mitchell Trust, Royal Marsden NHS Foundation Trust, Institute of Cancer Research NIHR Biomedical Research Centre for Cancer.


PLOS Genetics | 2005

Association between Common Variation in 120 Candidate Genes and Breast Cancer Risk

Paul Pharoah; Jonathan Tyrer; Alison M. Dunning; Douglas F. Easton; Bruce A.J. Ponder; Search Investigators

Association studies in candidate genes have been widely used to search for common low penetrance susceptibility alleles, but few definite associations have been established. We have conducted association studies in breast cancer using an empirical single nucleotide polymorphism (SNP) tagging approach to capture common genetic variation in genes that are candidates for breast cancer based on their known function. We genotyped 710 SNPs in 120 candidate genes in up to 4,400 breast cancer cases and 4,400 controls using a staged design. Correction for population stratification was done using the genomic control method, on the basis of data from 280 genomic control SNPs. Evidence for association with each SNP was assessed using a Cochran–Armitage trend test (p-trend) and a two-degrees of freedom χ2 test for heterogeneity (p-het). The most significant single SNP (p-trend = 8 × 10−5) was not significant at a nominal 5% level after adjusting for population stratification and multiple testing. To evaluate the overall evidence for an excess of positive associations over the proportion expected by chance, we applied two global tests: the admixture maximum likelihood (AML) test and the rank truncated product (RTP) test corrected for population stratification. The admixture maximum likelihood experiment-wise test for association was significant for both the heterogeneity test (p = 0.0031) and the trend test (p = 0.017), but no association was observed using the rank truncated product method for either the heterogeneity test or the trend test (p = 0.12 and p = 0.24, respectively). Genes in the cell-cycle control pathway and genes involved in steroid hormone metabolism and signalling were the main contributors to the association. These results suggest that a proportion of SNPs in these candidate genes are associated with breast cancer risk, but that the effects of individual SNPs is likely to be small. Large sample sizes from multicentre collaboration will be needed to identify associated SNPs with certainty.


Human Molecular Genetics | 2009

FGFR2 variants and breast cancer risk: fine-scale mapping using African American studies and analysis of chromatin conformation

Miriam S. Udler; Kerstin B. Meyer; Karen A. Pooley; Eric Karlins; Jeffery P. Struewing; Jinghui Zhang; David R. Doody; Stewart MacArthur; Jonathan Tyrer; Paul Pharoah; Robert Luben; Leslie Bernstein; Laurence N. Kolonel; Brian E. Henderson; Loic Le Marchand; Giske Ursin; Michael F. Press; Paul Brennan; Suleeporn Sangrajrang; Valerie Gaborieau; Fabrice Odefrey; Chen-Yang Shen; Pei-Ei Wu; Hui-Chun Wang; Daehee Kang; Keun-Young Yoo; Dong-Young Noh; Sei-Hyun Ahn; Bruce A.J. Ponder; Christopher A. Haiman

Genome-wide association studies have identified FGFR2 as a breast cancer (BC) susceptibility gene in populations of European and Asian descent, but a causative variant has not yet been conclusively identified. We hypothesized that the weaker linkage disequilibrium across this associated region in populations of African ancestry might help refine the set of candidate-causal single nucleotide polymorphisms (SNPs) previously identified by our group. Eight candidate-causal SNPs were evaluated in 1253 African American invasive BC cases and 1245 controls. A significant association with BC risk was found with SNP rs2981578 (unadjusted per-allele odds ratio = 1.20, 95% confidence interval 1.03-1.41, P(trend) = 0.02), with the odds ratio estimate similar to that reported in European and Asian subjects. To extend the fine-mapping, genotype data from the African American studies were analyzed jointly with data from European (n = 7196 cases, 7275 controls) and Asian (n = 3901 cases, 3205 controls) studies. In the combined analysis, SNP rs2981578 was the most strongly associated. Five other SNPs were too strongly correlated to be excluded at a likelihood ratio of < 1/100 relative to rs2981578. Analysis of DNase I hypersensitive sites indicated that only two of these map to highly accessible chromatin, one of which, SNP rs2981578, has previously been implicated in up-regulating FGFR2 expression. Our results demonstrate that the association of SNPs in FGFR2 with BC risk extends to women of African American ethnicity, and illustrate the utility of combining association analysis in datasets of diverse ethnic groups with functional experiments to identify disease susceptibility variants.


Journal of the National Cancer Institute | 2015

Germline Mutations in the BRIP1, BARD1, PALB2, and NBN Genes in Women With Ovarian Cancer

Susan J. Ramus; Honglin Song; Ed Dicks; Jonathan Tyrer; Adam N. Rosenthal; Maria P. Intermaggio; Lindsay Fraser; Aleksandra Gentry-Maharaj; Jane Hayward; Susan Philpott; Christopher E. Anderson; Christopher K. Edlund; David V. Conti; Patricia Harrington; Daniel Barrowdale; David Bowtell; Kathryn Alsop; Gillian Mitchell; Mine S. Cicek; Julie M. Cunningham; Brooke L. Fridley; Jennifer Alsop; Mercedes Jimenez-Linan; Samantha Poblete; S.B. Lele; Lara E. Sucheston-Campbell; Kirsten B. Moysich; Weiva Sieh; Valerie McGuire; Jenny Lester

BACKGROUND Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy, responsible for 13 000 deaths per year in the United States. Risk prediction based on identifying germline mutations in ovarian cancer susceptibility genes could have a clinically significant impact on reducing disease mortality. METHODS Next generation sequencing was used to identify germline mutations in the coding regions of four candidate susceptibility genes-BRIP1, BARD1, PALB2 and NBN-in 3236 invasive EOC case patients and 3431 control patients of European origin, and in 2000 unaffected high-risk women from a clinical screening trial of ovarian cancer (UKFOCSS). For each gene, we estimated the prevalence and EOC risks and evaluated associations between germline variant status and clinical and epidemiological risk factor information. All statistical tests were two-sided. RESULTS We found an increased frequency of deleterious mutations in BRIP1 in case patients (0.9%) and in the UKFOCSS participants (0.6%) compared with control patients (0.09%) (P = 1 x 10(-4) and 8 x 10(-4), respectively), but no differences for BARD1 (P = .39), NBN1 ( P = .61), or PALB2 (P = .08). There was also a difference in the frequency of rare missense variants in BRIP1 between case patients and control patients (P = 5.5 x 10(-4)). The relative risks associated with BRIP1 mutations were 11.22 for invasive EOC (95% confidence interval [CI] = 3.22 to 34.10, P = 1 x 10(-4)) and 14.09 for high-grade serous disease (95% CI = 4.04 to 45.02, P = 2 x 10(-5)). Segregation analysis in families estimated the average relative risks in BRIP1 mutation carriers compared with the general population to be 3.41 (95% CI = 2.12 to 5.54, P = 7×10(-7)). CONCLUSIONS Deleterious germline mutations in BRIP1 are associated with a moderate increase in EOC risk. These data have clinical implications for risk prediction and prevention approaches for ovarian cancer and emphasize the critical need for risk estimates based on very large sample sizes before genes of moderate penetrance have clinical utility in cancer prevention.


Journal of Clinical Oncology | 2015

Contribution of Germline Mutations in the RAD51B, RAD51C, and RAD51D Genes to Ovarian Cancer in the Population

Honglin Song; Ed Dicks; Susan J. Ramus; Jonathan Tyrer; Maria P. Intermaggio; Jane Hayward; Christopher K. Edlund; David V. Conti; Patricia Harrington; Lindsay Fraser; Susan Philpott; Christopher N. G. Anderson; Adam Rosenthal; Aleksandra Gentry-Maharaj; David Bowtell; Kathryn Alsop; Mine S. Cicek; Julie M. Cunningham; Brooke L. Fridley; Jennifer Alsop; Mercedes Jimenez-Linan; Estrid Høgdall; C Hogdall; Allan Jensen; Susanne Kriiger Kjaer; Jan Lubinski; Tomasz Huzarski; Anna Jakubowska; Jacek Gronwald; Samantha Poblete

PURPOSE The aim of this study was to estimate the contribution of deleterious mutations in the RAD51B, RAD51C, and RAD51D genes to invasive epithelial ovarian cancer (EOC) in the population and in a screening trial of individuals at high risk of ovarian cancer. PATIENTS AND METHODS The coding sequence and splice site boundaries of the three RAD51 genes were sequenced and analyzed in germline DNA from a case-control study of 3,429 patients with invasive EOC and 2,772 controls as well as in 2,000 unaffected women who were BRCA1/BRCA2 negative from the United Kingdom Familial Ovarian Cancer Screening Study (UK_FOCSS) after quality-control analysis. RESULTS In the case-control study, we identified predicted deleterious mutations in 28 EOC cases (0.82%) compared with three controls (0.11%; P < .001). Mutations in EOC cases were more frequent in RAD51C (14 occurrences, 0.41%) and RAD51D (12 occurrences, 0.35%) than in RAD51B (two occurrences, 0.06%). RAD51C mutations were associated with an odds ratio of 5.2 (95% CI, 1.1 to 24; P = .035), and RAD51D mutations conferred an odds ratio of 12 (95% CI, 1.5 to 90; P = .019). We identified 13 RAD51 mutations (0.65%) in unaffected UK_FOCSS participants (RAD51C, n = 7; RAD51D, n = 5; and RAD51B, n = 1), which was a significantly greater rate than in controls (P < .001); furthermore, RAD51 mutation carriers were more likely than noncarriers to have a family history of ovarian cancer (P < .001). CONCLUSION These results confirm that RAD51C and RAD51D are moderate ovarian cancer susceptibility genes and suggest that they confer levels of risk of EOC that may warrant their use alongside BRCA1 and BRCA2 in routine clinical genetic testing.


Radiotherapy and Oncology | 2014

A genome wide association study (GWAS) providing evidence of an association between common genetic variants and late radiotherapy toxicity

Gillian C. Barnett; Deborah Thompson; Laura Fachal; Sarah L. Kerns; Christopher J. Talbot; Rebecca Elliott; Leila Dorling; Charlotte E. Coles; David P. Dearnaley; Barry S. Rosenstein; Ana Vega; Paul Symonds; John Yarnold; Caroline Baynes; Kyriaki Michailidou; Joe Dennis; Jonathan Tyrer; Jennifer S. Wilkinson; Antonio Gómez-Caamaño; George A. Tanteles; Radka Platte; Rebecca Mayes; Don Conroy; Mel Maranian; Craig Luccarini; S. Gulliford; Matthew R. Sydes; Emma Hall; Joanne Haviland; Vivek Misra

BACKGROUND AND PURPOSE This study was designed to identify common single nucleotide polymorphisms (SNPs) associated with toxicity 2years after radiotherapy. MATERIALS AND METHODS A genome wide association study was performed in 1850 patients from the RAPPER study: 1217 received adjuvant breast radiotherapy and 633 had radical prostate radiotherapy. Genotype associations with both overall and individual endpoints of toxicity were tested via univariable and multivariable regression. Replication of potentially associated SNPs was carried out in three independent patient cohorts who had radiotherapy for prostate (516 RADIOGEN and 862 Gene-PARE) or breast (355 LeND) cancer. RESULTS Quantile-quantile plots show more associations at the P<5×10(-7) level than expected by chance (164 vs. 9 for the prostate cases and 29 vs. 4 for breast cases), providing evidence that common genetic variants are associated with risk of toxicity. Strongest associations were for individual endpoints rather than an overall measure of toxicity in all patients. However, in general, significant associations were not validated at a nominal 0.05 level in the replication cohorts. CONCLUSIONS This largest GWAS to date provides evidence of true association between common genetic variants and toxicity. Associations with toxicity appeared to be tumour site-specific. Future GWAS require higher statistical power, in particular in the validation stage, to test clinically relevant effect sizes of SNP associations with individual endpoints, but the required sample sizes are achievable.


Cancer Research | 2011

LIN28B Polymorphisms Influence Susceptibility to Epithelial Ovarian Cancer

Jennifer Permuth-Wey; Donghwa Kim; Ya Yu Tsai; Hui-Yi Lin; Y. Ann Chen; Jill S. Barnholtz-Sloan; Michael J. Birrer; Gregory C. Bloom; Stephen J. Chanock; Zhihua Chen; Daniel W. Cramer; Julie M. Cunningham; Getachew A. Dagne; Judith Ebbert-Syfrett; David Fenstermacher; Brooke L. Fridley; Montserrat Garcia-Closas; Simon A. Gayther; William Ge; Aleksandra Gentry-Maharaj; Jesus Gonzalez-Bosquet; Ellen L. Goode; Edwin S. Iversen; Heather Jim; William Kong; John R. McLaughlin; Usha Menon; Alvaro N.A. Monteiro; Steven A. Narod; Paul Pharoah

Defective microRNA (miRNA) biogenesis contributes to the development and progression of epithelial ovarian cancer (EOC). In this study, we examined the hypothesis that single nucleotide polymorphisms (SNP) in miRNA biogenesis genes may influence EOC risk. In an initial investigation, 318 SNPs in 18 genes were evaluated among 1,815 EOC cases and 1,900 controls, followed up by a replicative joint meta-analysis of data from an additional 2,172 cases and 3,052 controls. Of 23 SNPs from 9 genes associated with risk (empirical P < 0.05) in the initial investigation, the meta-analysis replicated 6 SNPs from the DROSHA, FMR1, LIN28, and LIN28B genes, including rs12194974 (G>A), an SNP in a putative transcription factor binding site in the LIN28B promoter region (summary OR = 0.90, 95% CI: 0.82-0.98; P = 0.015) which has been recently implicated in age of menarche and other phenotypes. Consistent with reports that LIN28B overexpression in EOC contributes to tumorigenesis by repressing tumor suppressor let-7 expression, we provide data from luciferase reporter assays and quantitative RT-PCR to suggest that the inverse association among rs12194974 A allele carriers may be because of reduced LIN28B expression. Our findings suggest that variants in LIN28B and possibly other miRNA biogenesis genes may influence EOC susceptibility.


Human Molecular Genetics | 2013

A genome-wide association scan (GWAS) for mean telomere length within the COGS project: identified loci show little association with hormone-related cancer risk

Karen A. Pooley; Stig E. Bojesen; Maren Weischer; Sune F. Nielsen; Deborah Thompson; Ali Amin Al Olama; Kyriaki Michailidou; Jonathan Tyrer; Sara Benlloch; Judith E. Brown; Tina Audley; Robert Luben; Kay-Tee Khaw; David E. Neal; Freddie C. Hamdy; Jenny Donovan; Zsofia Kote-Jarai; Caroline Baynes; Mitul Shah; Manjeet K. Bolla; Qin Wang; Joe Dennis; Ed Dicks; Rongxi Yang; Anja Rudolph; Joellen M. Schildkraut; Jenny Chang-Claude; Barbara Burwinkel; Georgia Chenevix-Trench; Paul Pharoah

Mean telomere length (TL) in blood cells is heritable and has been reported to be associated with risks of several diseases, including cancer. We conducted a meta-analysis of three GWAS for TL (total n=2240) and selected 1629 variants for replication via the “iCOGS” custom genotyping array. All ∼200 000 iCOGS variants were analysed with TL, and those displaying associations in healthy controls (n = 15 065) were further tested in breast cancer cases (n = 11 024). We found a novel TL association (Ptrend < 4 × 10−10) at 3p14.4 close to PXK and evidence (Ptrend < 7 × 10−7) for TL loci at 6p22.1 (ZNF311) and 20q11.2 (BCL2L1). We additionally confirmed (Ptrend < 5 × 10−14) the previously reported loci at 3q26.2 (TERC), 5p15.3 (TERT) and 10q24.3 (OBFC1) and found supportive evidence (Ptrend < 5 × 10−4) for the published loci at 2p16.2 (ACYP2), 4q32.2 (NAF1) and 20q13.3 (RTEL1). SNPs tagging these loci explain TL differences of up to 731 bp (corresponding to 18% of total TL in healthy individuals), however, they display little direct evidence for association with breast, ovarian or prostate cancer risks.

Collaboration


Dive into the Jonathan Tyrer's collaboration.

Top Co-Authors

Avatar

Paul Pharoah

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Simon A. Gayther

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Susan J. Ramus

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Honglin Song

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge