Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan W. Olson is active.

Publication


Featured researches published by Jonathan W. Olson.


Infection and Immunity | 2001

Superoxide dismutase-deficient mutants of Helicobacter pylori are hypersensitive to oxidative stress and defective in host colonization.

Richard W. Seyler; Jonathan W. Olson; Robert J. Maier

ABSTRACT Superoxide dismutase (SOD) is a nearly ubiquitous enzyme among organisms that are exposed to oxic environments. The single SOD ofHelicobacter pylori, encoded by the sodB gene, has been suspected to be a virulence factor for this pathogenic microaerophile, but mutations in this gene have not been reported previously. We have isolated mutants with interruptions in thesodB gene and have characterized them with respect to their response to oxidative stress and ability to colonize the mouse stomach. The sodB mutants are devoid of SOD activity, based on activity staining in nondenaturing gels and quantitative assays of cell extracts. Though wild-type H. pylori is microaerophilic, the mutants are even more sensitive to O2 for both growth and viability. While the wild-type strain is routinely grown at 12% O2, growth of the mutant strains is severely inhibited at above 5 to 6% O2. The effect of O2 on viability was determined by subjecting nongrowing cells to atmospheric levels of O2 and plating for survivors at 2-h time intervals. Wild-type cell viability dropped by about 1 order of magnitude after 6 h, while viability of the sodBmutant decreased by more than 6 orders of magnitude at the same time point. The mutants are also more sensitive to H2O2, and this sensitivity is exacerbated by increased O2 concentrations. Since oxidative stress has been correlated with DNA damage, the frequency of spontaneous mutation to rifampin resistance was studied. The frequency of mutagenesis of ansodB mutant strain is about 15-fold greater than that of the wild-type strain. In the mouse colonization model, only 1 out of 23 mice inoculated with an SOD-deficient mutant of a mouse-adapted strain became H. pylori positive, while 15 out of 17 mice inoculated with the wild-type strain were shown to harbor the organism. Therefore, SOD is a virulence factor which affects the ability of this organism to colonize the mouse stomach and is important for the growth and survival of H. pylori under conditions of oxidative stress.


Journal of Bacteriology | 2003

Characterization of Helicobacter pylori Nickel Metabolism Accessory Proteins Needed for Maturation of both Urease and Hydrogenase

Nalini Mehta; Jonathan W. Olson; Robert J. Maier

Previous studies demonstrated that two accessory proteins, HypA and HypB, play a role in nickel-dependent maturation of both hydrogenase and urease in Helicobacter pylori. Here, the two proteins were purified and characterized. HypA bound two Ni(2+) ions per dimer with positive cooperativity (Hill coefficient, approximately 2.0). The dissociation constants K(1) and K(2) for Ni(2+) were 58 and 1.3 microM, respectively. Studies on purified site-directed mutant proteins in each of the five histidine residues within HypA, revealed that only one histidine residue (His2) is vital for nickel binding. Nuclear magnetic resonance analysis showed that this purified mutant version (H2A) was similar in structure to that of the wild-type HypA protein. A chromosomal site-directed mutant of hypA (in the codon for His2) lacked hydrogenase activity and possessed only 2% of the wild-type urease activity. Purified HypB had a GTPase activity of 5 nmol of GTP hydrolyzed per nmol of HypB per min. Site-directed mutagenesis within the lysine residue in the conserved GTP-binding motif of HypB (Lys59) nearly abolished the GTPase activity of the mutant protein (K59A). In native solution, both HypA and HypB exist as homodimers with molecular masses of 25.8 and 52.4 kDa, respectively. However, a 1:1 molar mixture of HypA plus HypB gave rise to a 43.6-kDa species composed of both proteins. A 43-kDa heterodimeric HypA-HypB complex was also detected by cross-linking. The cross-linked adduct was still observed in the presence of 0.5 mM GTP or 1 microM nickel or when the mutant version of HypA (altered in His2) and HypB (altered in Lys59) were tested. Individually, HypA and HypB formed homodimeric cross-linked adducts. An interaction between HypA and the Hp0868 protein (encoded by the gene downstream of hypA) could not be detected via cross-linking, although such an interaction was predicted by yeast two-hybrid studies. In addition, the phenotype of an insertional mutation within the Hp0868 gene indicated that its presence is not critical for either the urease or the hydrogenase activity.


Journal of Bacteriology | 2002

Oxidative-Stress Resistance Mutants of Helicobacter pylori

Adriana A. Olczak; Jonathan W. Olson; Robert J. Maier

Within a large family of peroxidases, one member that catalyzes the reduction of organic peroxides to alcohols is known as alkyl hydroperoxide reductase, or AhpC. Gene disruption mutations in the gene encoding AhpC of Helicobacter pylori (ahpC) were generated by screening transformants under low-oxygen conditions. Two classes of mutants were obtained. Both types lack AhpC protein, but the major class (type I) isolated was found to synthesize increased levels (five times more than the wild type) of another proposed antioxidant protein, an iron-binding, neutrophil-activating protein (NapA). The other class of mutants, the minor class (type II), produced wild-type levels of NapA. The two types of AhpC mutants differed in their frequencies of spontaneous mutation to rifampin resistance and in their sensitivities to oxidative-stress chemicals, with the type I mutants exhibiting less sensitivity to organic hydroperoxides as well as having a lower mutation frequency. The napA promoter regions of the two types of AhpC mutants were identical, and primer extension analysis revealed their transcription start site to be the same as for the wild type. Gene disruption mutations were obtained in napA alone, and a double mutant strain (ahpC napA) was also created. All four of the oxidative-stress resistance mutants could be distinguished from the wild type in oxygen sensitivity or in some other oxidative-stress resistance phenotype (i.e., in sensitivity to stress-related chemicals and spontaneous mutation frequency). For example, growth of the NapA mutant was more sensitive to oxygen than that of the wild-type strain and both of the AhpC-type mutants were highly sensitive to paraquat and to cumene hydroperoxide. Of the four types of mutants, the double mutant was the most sensitive to growth inhibition by oxygen and by organic peroxides and it had the highest spontaneous mutation frequency. Notably, two-dimensional gel electrophoresis combined with protein sequence analysis identified another possible oxidative-stress resistance protein (HP0630) that was up-regulated in the double mutant. However, the transcription start site of the HP0630 gene was the same for the double mutant as for the wild type. It appears that H. pylori can readily modulate the expression of other resistance factors as a compensatory response to loss of a major oxidative-stress resistance component.


Journal of Bacteriology | 2000

Dual roles of Bradyrhizobium japonicum nickelin protein in nickel storage and GTP-dependent Ni mobilization.

Jonathan W. Olson; Robert J. Maier

The hydrogenase accessory protein HypB, or nickelin, has two functions in the N(2)-fixing, H(2)-oxidizing bacterium Bradyrhizobium japonicum. One function of HypB involves the mobilization of nickel into hydrogenase. HypB also carries out a nickel storage/sequestering function in B. japonicum, binding nine nickel ions per monomer. Here we report that the two roles (nickel mobilization and storage) of HypB can be separated in vitro and in vivo using molecular and biochemical approaches. The role of HypB in hydrogenase maturation is completely dependent on its intrinsic GTPase activity; strains which produce a HypB protein that is severely deficient in GTPase activity but that fully retains nickel-sequestering ability cannot produce active hydrogenase even upon prolonged nickel supplementation. A HypB protein that lacks the nickel-binding polyhistidine region near the N terminus lacks only the nickel storage capacity function; it is still able to bind a single nickel ion and also retains complete GTPase activity.


Infection and Immunity | 2003

Association of Helicobacter pylori Antioxidant Activities with Host Colonization Proficiency

Adriana A. Olczak; Richard W. Seyler; Jonathan W. Olson; Robert J. Maier

ABSTRACT To assess the importance of two separate antioxidant activities in Helicobacter pylori, we tested the abilities of strains with mutations in either tpx (encoding thiolperoxidase) or ahpC (encoding alkyl hydroperoxide reductase [AhpC]) to colonize the stomachs of mice. The tpx strain was clearly more sensitive than the parent strain to both oxygen and cumene hydroperoxide. The strain colonized only 5% of the inoculated mice. Two different classes of oxygen-sensitive ahpC mutants in the type strain (ATCC 43504) were recently described (A. A. Olczak, J. W. Olson, and R. J. Maier, J. Bacteriol. 184:3186-3193, 2002). The same two classes of mutants were recovered upon ahpC mutagenesis of the mouse-adapted strain, SS1. Neither of these mutants was able to colonize mouse stomachs, whereas 78% of the mice inoculated with the parent strain became H. pylori positive.


Applied and Environmental Microbiology | 2008

Role of Campylobacter jejuni Respiratory Oxidases and Reductases in Host Colonization

Rebecca A. Weingarten; J. L. Grimes; Jonathan W. Olson

ABSTRACT Campylobacter jejuni is the leading cause of human food-borne bacterial gastroenteritis. The C. jejuni genome sequence predicts a branched electron transport chain capable of utilizing multiple electron acceptors. Mutants were constructed by disrupting the coding regions of the respiratory enzymes nitrate reductase (napA::Cm), nitrite reductase (nrfA::Cm), dimethyl sulfoxide, and trimethylamine N-oxide reductase (termed Cj0264::Cm) and the two terminal oxidases, a cyanide-insensitive oxidase (cydA::Cm) and cbb3-type oxidase (ccoN::Cm). Each strain was characterized for the loss of the associated enzymatic function in vitro. The strains were then inoculated into 1-week-old chicks, and the cecal contents were assayed for the presence of C. jejuni 2 weeks postinoculation. cydA::Cm and Cj0264c::Cm strains colonized as well as the wild type; napA::Cm and nrfA::Cm strains colonized at levels significantly lower than the wild type. The ccoN::Cm strain was unable to colonize the chicken; no colonies were recovered at the end of the experiment. While there appears to be a role for anaerobic respiration in host colonization, oxygen is the most important respiratory acceptor for C. jejuni in the chicken cecum.


Journal of Bacteriology | 2009

The Dual-Functioning Fumarate Reductase Is the Sole Succinate:Quinone Reductase in Campylobacter jejuni and Is Required for Full Host Colonization

Rebecca A. Weingarten; Michael E. Taveirne; Jonathan W. Olson

Campylobacter jejuni encodes all the enzymes necessary for a complete oxidative tricarboxylic acid (TCA) cycle. Because of its inability to utilize glucose, C. jejuni relies exclusively on amino acids as the source of reduced carbon, and they are incorporated into central carbon metabolism. The oxidation of succinate to fumarate is a key step in the oxidative TCA cycle. C. jejuni encodes enzymes annotated as a fumarate reductase (Cj0408 to Cj0410) and a succinate dehydrogenase (Cj0437 to Cj0439). Null alleles in the genes encoding each enzyme were constructed. Both enzymes contributed to the total fumarate reductase activity in vitro. The frdA::cat(+) strain was completely deficient in succinate dehydrogenase activity in vitro and was unable to perform whole-cell succinate-dependent respiration. The sdhA::cat(+) strain exhibited wild-type levels of succinate dehydrogenase activity both in vivo and in vitro. These data indicate that Frd is the only succinate dehydrogenase in C. jejuni and that the protein annotated as a succinate dehydrogenase has been misannotated. The frdA::cat(+) strain was also unable to grow with the characteristic wild-type biphasic growth pattern and exhibited only the first growth phase, which is marked by the consumption of aspartate, serine, and associated organic acids. Substrates consumed in the second growth phase (glutamate, proline, and associated organic acids) were not catabolized by the the frdA::cat(+) strain, indicating that the oxidation of succinate is a crucial step in metabolism of these substrates. Chicken colonization trials confirmed the in vivo importance of succinate oxidation, as the frdA::cat(+) strain colonized chickens at significantly lower levels than the wild type, while the sdhA::cat(+) strain colonized chickens at wild-type levels.


Microbial Pathogenesis | 2009

The role of respiratory donor enzymes in Campylobacter jejuni host colonization and physiology

Dilan R. Weerakoon; Nathan J. Borden; Carrie M. Goodson; J. L. Grimes; Jonathan W. Olson

The human pathogen Campylobacter jejuni utilizes oxidative phosphorylation to meet all of its energy demands. The genome sequence of this bacterium encodes a number of respiratory enzymes in a branched electron transport chain that predicts the utilization of a number of electron transport chain donor and acceptor molecules. Three of these electron donor enzymes: hydrogenase, formate dehydrogenase, and 2-oxoglutarate:acceptor oxidoreductase (OOR), oxidize hydrogen, formate and alpha-ketoglutarate as electron donors, respectively. Mutations were created in these donor enzymes to isolate mutants in hydrogenase (HydB::CM), formate dehydrogenase (Fdh::CM), and OOR (OorB::CM), as well as a strain with insertions in both hydrogenase and formate dehydrogenase (Hyd::Fdh). These mutants are deficient in their respective enzyme activities and do not reduce the components of the electron transport chain when provided with their respective substrates. The presence of either hydrogen or formate in the media stimulated the growth of wild type (WT) C. jejuni (but not the associated mutant strains) and at least one of these alternative substrates is required for growth of the OOR mutant strain OorB::CM. Finally, the importance of hydrogenase, formate dehydrogenase and OOR as well as the complex I of C. jejuni are elucidated by chicken colonization assays, where the double mutant Hyd::Fdh, OorB::CM and nuo mutants are severely impaired in host colonization.


Journal of Bacteriology | 2008

The Campylobacter jejuni NADH:ubiquinone oxidoreductase (complex I) utilizes flavodoxin rather than NADH.

Dilan R. Weerakoon; Jonathan W. Olson

Campylobacter jejuni encodes 12 of the 14 subunits that make up the respiratory enzyme NADH:ubiquinone oxidoreductase (also called complex I). The two nuo genes not present in C. jejuni encode the NADH dehydrogenase, and in their place in the operon are the novel genes designated Cj1575c and Cj1574c. A series of mutants was generated in which each of the 12 nuo genes (homologues to known complex I subunits) was disrupted or deleted. Each of the nuo mutants will not grow in amino acid-based medium unless supplemented with an alternative respiratory substrate such as formate. Unlike the nuo genes, Cj1574c is an essential gene and could not be disrupted unless an intact copy of the gene was provided at an unrelated site on the chromosome. A nuo deletion mutant can efficiently respire formate but is deficient in alpha-ketoglutarate respiratory activity compared to the wild type. In C. jejuni, alpha-ketoglutarate respiration is mediated by the enzyme 2-oxoglutarate:acceptor oxidoreductase; mutagenesis of this enzyme abolishes alpha-ketoglutarate-dependent O2 uptake and fails to reduce the electron transport chain. The electron acceptor for 2-oxoglutarate:acceptor oxidoreductase was determined to be flavodoxin, which was also determined to be an essential protein in C. jejuni. A model is presented in which CJ1574 mediates electron flow into the respiratory transport chain from reduced flavodoxin and through complex I.


BMC Microbiology | 2012

Respiratory proteins contribute differentially to Campylobacter jejuni’s survival and in vitro interaction with hosts’ intestinal cells

Issmat I. Kassem; Mahesh Khatri; Malak A. Esseili; Yasser M. Sanad; Yehia M. Saif; Jonathan W. Olson; Gireesh Rajashekara

BackgroundThe genetic features that facilitate Campylobacter jejuni’s adaptation to a wide range of environments are not completely defined. However, whole genome expression studies showed that respiratory proteins (RPs) were differentially expressed under varying conditions and stresses, suggesting further unidentified roles for RPs in C. jejuni’s adaptation. Therefore, our objectives were to characterize the contributions of selected RPs to C. jejuni’s i- key survival phenotypes under different temperature (37°C vs. 42°C) and oxygen (microaerobic, ambient, and oxygen-limited/anaerobic) conditions and ii- its interactions with intestinal epithelial cells from disparate hosts (human vs. chickens).ResultsC. jejuni mutant strains with individual deletions that targeted five RPs; nitrate reductase (ΔnapA), nitrite reductase (ΔnrfA), formate dehydrogenase (ΔfdhA), hydrogenase (ΔhydB), and methylmenaquinol:fumarate reductase (ΔmfrA) were used in this study. We show that only the ΔfdhA exhibited a decrease in motility; however, incubation at 42°C significantly reduced the deficiency in the ΔfdhA’s motility as compared to 37°C. Under all tested conditions, the ΔmfrA showed a decreased susceptibility to hydrogen peroxide (H2O2), while the ΔnapA and the ΔfdhA showed significantly increased susceptibility to the oxidant as compared to the wildtype. Further, the susceptibility of the ΔnapA to H2O2 was significantly more pronounced at 37°C. The biofilm formation capability of individual RP mutants varied as compared to the wildtype. However, the impact of the deletion of certain RPs affected biofilm formation in a manner that was dependent on temperature and/or oxygen concentration. For example, the ΔmfrA displayed significantly deficient and increased biofilm formation under microaerobic conditions at 37°C and 42°C, respectively. However, under anaerobic conditions, the ΔmfrA was only significantly impaired in biofilm formation at 42°C. Additionally, the RPs mutants showed differential ability for infecting and surviving in human intestinal cell lines (INT-407) and primary chicken intestinal epithelial cells, respectively. Notably, the ΔfdhA and the ΔhydB were deficient in interacting with both cell types, while the ΔmfrA displayed impairments only in adherence to and invasion of INT-407. Scanning electron microscopy showed that the ΔhydB and the ΔfdhA exhibited filamentous and bulging (almost spherical) cell shapes, respectively, which might be indicative of defects in cell division.ConclusionsWe conclude that the RPs contribute to C. jejuni’s motility, H2O2 resistance, biofilm formation, and in vitro interactions with hosts’ intestinal cells. Further, the impact of certain RPs varied in response to incubation temperature and/or oxygen concentration. Therefore, RPs may facilitate the prevalence of C. jejuni in a variety of niches, contributing to the pathogen’s remarkable potential for adaptation.

Collaboration


Dive into the Jonathan W. Olson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sophia Kathariou

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael E. Taveirne

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Robin M. Siletzky

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Susan P. Gardner

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Bingqing Wang

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Dilan R. Weerakoon

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gireesh Rajashekara

Ohio Agricultural Research and Development Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge