Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan Weintroub is active.

Publication


Featured researches published by Jonathan Weintroub.


Nature | 2008

Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre

Sheperd S. Doeleman; Jonathan Weintroub; Alan E. E. Rogers; R. L. Plambeck; Robert Freund; Remo P. J. Tilanus; Per Friberg; L. M. Ziurys; James M. Moran; B. E. Corey; K. Young; Daniel L. Smythe; Michael Titus; D. P. Marrone; R. J. Cappallo; Douglas C.-J. Bock; Geoffrey C. Bower; Richard A. Chamberlin; Gary R. Davis; T. P. Krichbaum; James W. Lamb; H. L. Maness; Arthur Niell; Alan L. Roy; Peter A. Strittmatter; D. Werthimer; Alan R. Whitney; David P. Woody

The cores of most galaxies are thought to harbour supermassive black holes, which power galactic nuclei by converting the gravitational energy of accreting matter into radiation. Sagittarius A* (Sgr A*), the compact source of radio, infrared and X-ray emission at the centre of the Milky Way, is the closest example of this phenomenon, with an estimated black hole mass that is 4,000,000 times that of the Sun. A long-standing astronomical goal is to resolve structures in the innermost accretion flow surrounding Sgr A*, where strong gravitational fields will distort the appearance of radiation emitted near the black hole. Radio observations at wavelengths of 3.5 mm and 7 mm have detected intrinsic structure in Sgr A*, but the spatial resolution of observations at these wavelengths is limited by interstellar scattering. Here we report observations at a wavelength of 1.3 mm that set a size of microarcseconds on the intrinsic diameter of Sgr A*. This is less than the expected apparent size of the event horizon of the presumed black hole, suggesting that the bulk of Sgr A* emission may not be centred on the black hole, but arises in the surrounding accretion flow.


Science | 2012

Jet-launching structure resolved near the supermassive black hole in m87

Sheperd S. Doeleman; Vincent L. Fish; David E. Schenck; Christopher Beaudoin; R. Blundell; Geoffrey C. Bower; Avery E. Broderick; Richard A. Chamberlin; Robert Freund; Per Friberg; M. A. Gurwell; Paul T. P. Ho; Mareki Honma; Makoto Inoue; T. P. Krichbaum; James W. Lamb; Abraham Loeb; Colin J. Lonsdale; D. P. Marrone; James M. Moran; Tomoaki Oyama; R. L. Plambeck; Rurik A. Primiani; Alan E. E. Rogers; Daniel L. Smythe; Jason SooHoo; Peter A. Strittmatter; Remo P. J. Tilanus; Michael Titus; Jonathan Weintroub

Black Hole Close-Up M87 is a giant elliptical galaxy about 55 million light-years away. Accretion of matter onto its central massive black hole is thought to power its relativistic jet. To probe structures on scales similar to that of the black holes event horizon, Doeleman et al. (p. 355, published online 27 September) observed the relativistic jet in M87 at a wavelength of 1.3 mm using the Event Horizon Telescope, a special purpose, very-long-baseline interferometry array consisting of four radio telescopes located in Arizona, California, and Hawaii. The analysis suggests that the accretion disk that powers the jet orbits in the same direction as the spin of the black hole. High-resolution observations of the jet in the galaxy M87 probe structures very close to the galaxy’s central black hole. Approximately 10% of active galactic nuclei exhibit relativistic jets, which are powered by the accretion of matter onto supermassive black holes. Although the measured width profiles of such jets on large scales agree with theories of magnetic collimation, the predicted structure on accretion disk scales at the jet launch point has not been detected. We report radio interferometry observations, at a wavelength of 1.3 millimeters, of the elliptical galaxy M87 that spatially resolve the base of the jet in this source. The derived size of 5.5 ± 0.4 Schwarzschild radii is significantly smaller than the innermost edge of a retrograde accretion disk, suggesting that the M87 jet is powered by an accretion disk in a prograde orbit around a spinning black hole.


The Astrophysical Journal | 2011

1.3 mm WAVELENGTH VLBI OF SAGITTARIUS A*: DETECTION OF TIME-VARIABLE EMISSION ON EVENT HORIZON SCALES

Vincent L. Fish; Sheperd S. Doeleman; Christopher Beaudoin; Raymond Blundell; David E. Bolin; Geoffrey C. Bower; Richard A. Chamberlin; Robert Freund; Per Friberg; M. A. Gurwell; Mareki Honma; Makoto Inoue; T. P. Krichbaum; James W. Lamb; D. P. Marrone; James M. Moran; Tomoaki Oyama; R. L. Plambeck; Rurik A. Primiani; Alan E. E. Rogers; Daniel L. Smythe; Jason SooHoo; Peter A. Strittmatter; Remo P. J. Tilanus; Michael Titus; Jonathan Weintroub; Melvyn C. H. Wright; David P. Woody; K. Young; L. M. Ziurys

Sagittarius A*, the ~4 × 10^6 M_⊙ black hole candidate at the Galactic center, can be studied on Schwarzschild radius scales with (sub)millimeter wavelength very long baseline interferometry (VLBI). We report on 1.3 mm wavelength observations of Sgr A* using a VLBI array consisting of the JCMT on Mauna Kea, the Arizona Radio Observatory’s Submillimeter Telescope on Mt. Graham in Arizona, and two telescopes of the CARMA array at Cedar Flat in California. Both Sgr A* and the quasar calibrator 1924−292 were observed over three consecutive nights, and both sources were clearly detected on all baselines. For the first time, we are able to extract 1.3mmVLBI interferometer phase information on Sgr A* through measurement of closure phase on the triangle of baselines. On the third night of observing, the correlated flux density of Sgr A* on all VLBI baselines increased relative to the first two nights, providing strong evidence for time-variable change on scales of a few Schwarzschild radii. These results suggest that future VLBI observations with greater sensitivity and additional baselines will play a valuable role in determining the structure of emission near the event horizon of Sgr A*.


Science | 2015

Resolved magnetic-field structure and variability near the event horizon of Sagittarius A∗

Michael D. Johnson; Vincent L. Fish; Sheperd S. Doeleman; D. P. Marrone; R. L. Plambeck; J. F. C. Wardle; Kazunori Akiyama; Keiichi Asada; Christopher Beaudoin; L. Blackburn; R. Blundell; Geoffrey C. Bower; Christiaan Brinkerink; Avery E. Broderick; R. J. Cappallo; Andrew A. Chael; Geoffrey Crew; Jason Dexter; Matt Dexter; Robert Freund; Per Friberg; Roman Gold; M. A. Gurwell; Paul T. P. Ho; Mareki Honma; Makoto Inoue; Michael Kosowsky; T. P. Krichbaum; James W. Lamb; Abraham Loeb

Magnetic fields near the event horizon Astronomers have long sought to examine a black holes event horizon—the boundary around the black hole within which nothing can escape. Johnson et al. used sophisticated interferometry techniques to combine data from millimeter-wavelength telescopes around the world. They measured polarization just outside the event horizon of Sgr A*, the supermassive black hole at the center of our galaxy, the Milky Way. The polarization is a signature of ordered magnetic fields generated in the accretion disk around the black hole. The results help to explain how black holes accrete gas and launch jets of material into their surroundings. Science, this issue p. 1242 Magnetic fields around the event horizon of a supermassive black hole have been probed. Near a black hole, differential rotation of a magnetized accretion disk is thought to produce an instability that amplifies weak magnetic fields, driving accretion and outflow. These magnetic fields would naturally give rise to the observed synchrotron emission in galaxy cores and to the formation of relativistic jets, but no observations to date have been able to resolve the expected horizon-scale magnetic-field structure. We report interferometric observations at 1.3-millimeter wavelength that spatially resolve the linearly polarized emission from the Galactic Center supermassive black hole, Sagittarius A*. We have found evidence for partially ordered magnetic fields near the event horizon, on scales of ~6 Schwarzschild radii, and we have detected and localized the intrahour variability associated with these fields.


The Astrophysical Journal | 2015

230 GHz VLBI Observations of M87: Event-horizon-scale Structure during an Enhanced Very-high-energy γ--Ray State in 2012

Kazunori Akiyama; Ru Sen Lu; Vincent L. Fish; Sheperd S. Doeleman; Avery E. Broderick; Jason Dexter; Kazuhiro Hada; Motoki Kino; Hiroshi Nagai; Mareki Honma; Michael D. Johnson; Juan C. Algaba; Keiichi Asada; Christiaan Brinkerink; R. Blundell; Geoffrey C. Bower; R. J. Cappallo; Geoffrey Crew; Matt Dexter; Sergio A. Dzib; Robert Freund; Per Friberg; M. A. Gurwell; Paul T. P. Ho; Makoto Inoue; T. P. Krichbaum; Laurent Loinard; David MacMahon; D. P. Marrone; James M. Moran

We report on 230 GHz (1.3 mm) VLBI observations of M87 with the Event Horizon Telescope using antennas on Mauna Kea in Hawaii, Mt. Graham in Arizona and Cedar Flat in California. For the first time, we have acquired 230 GHz VLBI interferometric phase information on M87 through measurement of closure phase on the triangle of long baselines. Most of the measured closure phases are consistent with 0 ◦ as expected by physically-motivated models for 230 GHz structure such as jet models and accretion disk models. The brightness temperature of the event-horizon-scale structure is � 1 × 10 10 K derived from the compact flux density of � 1 Jy and the angular size of � 40 µas � 5.5 Rs, which is broadly consistent with the peak brightness of the radio cores at 1-86 GHz located within � 10 2 Rs. Our observations occurred in the middle of an enhancement in very-high-energy (VHE) -ray flux, presumably originating in the vicinity of the central black hole. Our measurements, combined with results of multi-wavelength observations, favor a scenario in which the VHE region has an extended size of �20-60 Rs. Subject headings: galaxies: active —galaxies: individual (M87) —galaxies: jets —radio continuum: galaxies —techniques: high angular resolution —techniques: interferometric


The Astrophysical Journal | 2016

PERSISTENT ASYMMETRIC STRUCTURE OF SAGITTARIUS A* ON EVENT HORIZON SCALES

Vincent L. Fish; Michael D. Johnson; Sheperd S. Doeleman; Avery E. Broderick; Dimitrios Psaltis; Ru-Sen Lu; Kazunori Akiyama; W. Alef; Juan C. Algaba; Keiichi Asada; Christopher Beaudoin; Alessandra Bertarini; L. Blackburn; R. Blundell; Geoffrey C. Bower; Christiaan Brinkerink; R. J. Cappallo; Andrew A. Chael; Richard A. Chamberlin; Chi-kwan Chan; Geoffrey Crew; Jason Dexter; Matt Dexter; Sergio A. Dzib; H. Falcke; Robert Freund; Per Friberg; Christopher Greer; M. A. Gurwell; Paul T. P. Ho

The Galactic Center black hole Sagittarius A* (Sgr A*) is a prime observing target for the Event Horizon Telescope (EHT), which can resolve the 1.3 mm emission from this source on angular scales comparable to that of the general relativistic shadow. Previous EHT observations have used visibility amplitudes to infer the morphology of the millimeter-wavelength emission. Potentially much richer source information is contained in the phases. We report on 1.3 mm phase information on Sgr A* obtained with the EHT on a total of 13 observing nights over 4 years. Closure phases, the sum of visibility phases along a closed triangle of interferometer baselines, are used because they are robust against phase corruptions introduced by instrumentation and the rapidly variable atmosphere. The median closure phase on a triangle including telescopes in California, Hawaii, and Arizona is nonzero. This result conclusively demonstrates that the millimeter emission is asymmetric on scales of a few Schwarzschild radii and can be used to break 180-degree rotational ambiguities inherent from amplitude data alone. The stability of the sign of the closure phase over most observing nights indicates persistent asymmetry in the image of Sgr A* that is not obscured by refraction due to interstellar electrons along the line of sight.


The Astrophysical Journal | 2013

Fine-scale structure of the quasar 3c 279 measured with 1.3 mm very long baseline interferometry

Ru-Sen Lu; Vincent L. Fish; Kazunori Akiyama; Sheperd S. Doeleman; Juan C. Algaba; Geoffrey C. Bower; Christiaan Brinkerink; Richard A. Chamberlin; Geoffrey Crew; R. J. Cappallo; Matt Dexter; Robert Freund; Per Friberg; M. A. Gurwell; Paul T. P. Ho; Mareki Honma; Makoto Inoue; Svetlana G. Jorstad; T. P. Krichbaum; Laurent Loinard; David MacMahon; D. P. Marrone; Alan P. Marscher; James M. Moran; R. L. Plambeck; Nicolas Pradel; Rurik A. Primiani; Remo P. J. Tilanus; Michael Titus; Jonathan Weintroub

We report results from five day very long baseline interferometry observations of the well-known quasar 3C 279 at 1.3 mm (230 GHz) in 2011. The measured nonzero closure phases on triangles including stations in Arizona, California, and Hawaii indicate that the source structure is spatially resolved. We find an unusual inner jet direction at scales of ~1 pc extending along the northwest-southeast direction (P.A. = 127° ± 3°), as opposed to other (previously) reported measurements on scales of a few parsecs showing inner jet direction extending to the southwest. The 1.3 mm structure corresponds closely with that observed in the central region of quasi-simultaneous super-resolution Very Long Baseline Array images at 7 mm. The closure phase changed significantly on the last day when compared with the rest of observations, indicating that the inner jet structure may be variable on daily timescales. The observed new direction of the inner jet shows inconsistency with the prediction of a class of jet precession models. Our observations indicate a brightness temperature of ~8 × 1010 K in the 1.3 mm core, much lower than that at centimeter wavelengths. Observations with better uv coverage and sensitivity in the coming years will allow the discrimination between different structure models and will provide direct images of the inner regions of the jet with 20-30 μas (5-7 light months) resolution.


The Astrophysical Journal | 2012

RESOLVING THE INNER JET STRUCTURE OF 1924-292 WITH THE EVENT HORIZON TELESCOPE

Ru Sen Lu; Vincent L. Fish; Jonathan Weintroub; Sheperd S. Doeleman; Geoffrey C. Bower; Robert Freund; Per Friberg; Paul T. P. Ho; Mareki Honma; Makoto Inoue; T. P. Krichbaum; D. P. Marrone; James M. Moran; Tomoaki Oyama; R. L. Plambeck; Rurik A. Primiani; Zhi-Qiang Shen; Remo P. J. Tilanus; Melvyn C. H. Wright; Ken H. Young; L. M. Ziurys; J. Anton Zensus

We present the first 1.3 mm (230 GHz) very long baseline interferometry model image of an active galactic nucleus (AGN) jet using closure phase techniques with a four-element array. The model image of the quasar 1924-292 was obtained with four telescopes at three observatories: the James Clerk Maxwell Telescope on Mauna Kea in Hawaii, the Arizona Radio Observatorys Submillimeter Telescope in Arizona, and two telescopes of the Combined Array for Research in Millimeter-wave Astronomy in California in 2009 April. With the greatly improved resolution compared with previous observations and robust closure phase measurement, the inner jet structure of 1924-292 was spatially resolved. The inner jet extends to the northwest along a position angle of -53 degrees. at a distance of 0.38 mas from the tentatively identified core, in agreement with the inner jet structure inferred from lower frequencies, and making a position angle difference of similar to 80 degrees with respect to the centimeter jet. The size of the compact core is 0.15 pc with a brightness temperature of 1.2 x 10(11) K. Compared with those measured at lower frequencies, the low brightness temperature may argue in favor of the decelerating jet model or particle-cascade models. The successful measurement of closure phase paves the way for imaging and time resolving Sgr A* and nearby AGNs with the Event Horizon Telescope.


arXiv: Instrumentation and Methods for Astrophysics | 2016

A Decade of Developing Radio-Astronomy Instrumentation using CASPER Open-Source Technology

Jack Hickish; Zuhra Abdurashidova; Zaki S. Ali; Kaushal D. Buch; Sandeep C. Chaudhari; Hong Chen; Matthew R. Dexter; Rachel Simone Domagalski; John Ford; Griffin Foster; David George; Joe Greenberg; L. J. Greenhill; Adam Isaacson; Homin Jiang; Glenn Jones; Francois Kapp; Henno Kriel; Rich Lacasse; Andrew Lutomirski; David MacMahon; Jason Manley; Andrew Martens; Randy McCullough; Mekhala V. Muley; Wesley New; Aaron R. Parsons; Daniel C. Price; Rurik A. Primiani; Jason Ray

The Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) has been working for a decade to reduce the time and cost of designing, building and deploying new digital radio-astronomy instruments. Today, CASPER open-source technology powers over 45 scientific instruments worldwide, and is used by scientists and engineers at dozens of academic institutions. In this paper, we catalog the current offerings of the CASPER collaboration, and instruments past and present built by CASPER users and developers. We describe the ongoing state of software development, as CASPER looks to support a broader range of programming environments and hardware and ensure compatibility with the latest vendor tools.


Astronomy and Astrophysics | 2015

First 230? GHz VLBI fringes on 3C 279 using the APEX Telescope (Research Note)

Jan Wagner; Alan L. Roy; T. P. Krichbaum; W. Alef; A. Bansod; Alessandra Bertarini; R. Güsten; D. A. Graham; Jeffrey A. Hodgson; R. Märtens; K. M. Menten; Dirk Muders; Helge Rottmann; G. Tuccari; A. Weiss; G. Wieching; Michael Wunderlich; J. A. Zensus; Juan Pablo Araneda; Oriel Arriagada; M. Cantzler; C. Duran; F. M. Montenegro-Montes; R. Olivares; Patricio Caro; Per Bergman; John Conway; Rüdiger Haas; Jan M. Johansson; Michael Lindqvist

Aims. We report about a 230 GHz very long baseline interferometry (VLBI) fringe finder observation of blazar 3C 279 with the APEX telescope in Chile, the phased submillimeter array (SMA), and the SMT of the Arizona Radio Observatory (ARO). Methods. We installed VLBI equipment and measured the APEX station position to 1 cm accuracy (1σ). We then observed 3C 279 on 2012 May 7 in a 5 h 230 GHz VLBI track with baseline lengths of 2800 Mλ to 7200 Mλ and a finest fringe spacing of 28.6 μas. Results. Fringes were detected on all baselines with signal-to-noise ratios of 12 to 55 in 420 s. The correlated flux density on the longest baseline was ∼0.3 Jy beam−1, out of a total flux density of 19.8 Jy. Visibility data suggest an emission region .38 μas in size, and at least two components, possibly polarized. We find a lower limit of the brightness temperature of the inner jet region of about 1010 K. Lastly, we find an upper limit of 20% on the linear polarization fraction at a fringe spacing of ∼38 μas. Conclusions. With APEX the angular resolution of 230 GHz VLBI improves to 28.6 μas. This allows one to resolve the last-photon ring around the Galactic Center black hole event horizon, expected to be 40 μas in diameter, and probe radio jet launching at unprecedented resolution, down to a few gravitational radii in galaxies like M 87. To probe the structure in the inner parsecs of 3C 279 in detail, follow-up observations with APEX and five other mm-VLBI stations have been conducted (March 2013) and are being analyzed.

Collaboration


Dive into the Jonathan Weintroub's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vincent L. Fish

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Per Friberg

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Christopher Beaudoin

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Paul T. P. Ho

Academia Sinica Institute of Astronomy and Astrophysics

View shared research outputs
Researchain Logo
Decentralizing Knowledge