Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher Beaudoin is active.

Publication


Featured researches published by Christopher Beaudoin.


Science | 2012

Jet-launching structure resolved near the supermassive black hole in m87

Sheperd S. Doeleman; Vincent L. Fish; David E. Schenck; Christopher Beaudoin; R. Blundell; Geoffrey C. Bower; Avery E. Broderick; Richard A. Chamberlin; Robert Freund; Per Friberg; M. A. Gurwell; Paul T. P. Ho; Mareki Honma; Makoto Inoue; T. P. Krichbaum; James W. Lamb; Abraham Loeb; Colin J. Lonsdale; D. P. Marrone; James M. Moran; Tomoaki Oyama; R. L. Plambeck; Rurik A. Primiani; Alan E. E. Rogers; Daniel L. Smythe; Jason SooHoo; Peter A. Strittmatter; Remo P. J. Tilanus; Michael Titus; Jonathan Weintroub

Black Hole Close-Up M87 is a giant elliptical galaxy about 55 million light-years away. Accretion of matter onto its central massive black hole is thought to power its relativistic jet. To probe structures on scales similar to that of the black holes event horizon, Doeleman et al. (p. 355, published online 27 September) observed the relativistic jet in M87 at a wavelength of 1.3 mm using the Event Horizon Telescope, a special purpose, very-long-baseline interferometry array consisting of four radio telescopes located in Arizona, California, and Hawaii. The analysis suggests that the accretion disk that powers the jet orbits in the same direction as the spin of the black hole. High-resolution observations of the jet in the galaxy M87 probe structures very close to the galaxy’s central black hole. Approximately 10% of active galactic nuclei exhibit relativistic jets, which are powered by the accretion of matter onto supermassive black holes. Although the measured width profiles of such jets on large scales agree with theories of magnetic collimation, the predicted structure on accretion disk scales at the jet launch point has not been detected. We report radio interferometry observations, at a wavelength of 1.3 millimeters, of the elliptical galaxy M87 that spatially resolve the base of the jet in this source. The derived size of 5.5 ± 0.4 Schwarzschild radii is significantly smaller than the innermost edge of a retrograde accretion disk, suggesting that the M87 jet is powered by an accretion disk in a prograde orbit around a spinning black hole.


The Astrophysical Journal | 2011

1.3 mm WAVELENGTH VLBI OF SAGITTARIUS A*: DETECTION OF TIME-VARIABLE EMISSION ON EVENT HORIZON SCALES

Vincent L. Fish; Sheperd S. Doeleman; Christopher Beaudoin; Raymond Blundell; David E. Bolin; Geoffrey C. Bower; Richard A. Chamberlin; Robert Freund; Per Friberg; M. A. Gurwell; Mareki Honma; Makoto Inoue; T. P. Krichbaum; James W. Lamb; D. P. Marrone; James M. Moran; Tomoaki Oyama; R. L. Plambeck; Rurik A. Primiani; Alan E. E. Rogers; Daniel L. Smythe; Jason SooHoo; Peter A. Strittmatter; Remo P. J. Tilanus; Michael Titus; Jonathan Weintroub; Melvyn C. H. Wright; David P. Woody; K. Young; L. M. Ziurys

Sagittarius A*, the ~4 × 10^6 M_⊙ black hole candidate at the Galactic center, can be studied on Schwarzschild radius scales with (sub)millimeter wavelength very long baseline interferometry (VLBI). We report on 1.3 mm wavelength observations of Sgr A* using a VLBI array consisting of the JCMT on Mauna Kea, the Arizona Radio Observatory’s Submillimeter Telescope on Mt. Graham in Arizona, and two telescopes of the CARMA array at Cedar Flat in California. Both Sgr A* and the quasar calibrator 1924−292 were observed over three consecutive nights, and both sources were clearly detected on all baselines. For the first time, we are able to extract 1.3mmVLBI interferometer phase information on Sgr A* through measurement of closure phase on the triangle of baselines. On the third night of observing, the correlated flux density of Sgr A* on all VLBI baselines increased relative to the first two nights, providing strong evidence for time-variable change on scales of a few Schwarzschild radii. These results suggest that future VLBI observations with greater sensitivity and additional baselines will play a valuable role in determining the structure of emission near the event horizon of Sgr A*.


IEEE Transactions on Antennas and Propagation | 2011

Cryogenic 2–13 GHz Eleven Feed for Reflector Antennas in Future Wideband Radio Telescopes

Jian Yang; Miroslav Pantaleev; Per-Simon Kildal; Benjamin Klein; Yogesh B. Karandikar; Leif Helldner; Niklas Wadefalk; Christopher Beaudoin

The system design of a cryogenic 2-13 GHz feed is considered with emphasis on its application in future wideband radio telescope systems. The feed is based on the so-called Eleven antenna and the design requires careful integration of various sub-designs in order to realize cryogenic operation. The various sub-designs include the electrical design of the Eleven antenna, design of the critical center puck, alternative solutions for integrating the Eleven antenna with low-noise amplifiers (LNAs), mechanical and cryogenic design and tests, and system noise temperature estimation and measurements. A great deal of simulated and measured results are presented throughout this paper, including the electrical, mechanical and cryogenic performance, and an assessment of the system noise temperature. The objective of this work is to present a good feed candidate that is well-suited for VLBI2010 and SKA radio telescopes. Further developments needed to completely fulfill the requirements for these future wideband radio telescopes are also discussed.


Science | 2015

Resolved magnetic-field structure and variability near the event horizon of Sagittarius A∗

Michael D. Johnson; Vincent L. Fish; Sheperd S. Doeleman; D. P. Marrone; R. L. Plambeck; J. F. C. Wardle; Kazunori Akiyama; Keiichi Asada; Christopher Beaudoin; L. Blackburn; R. Blundell; Geoffrey C. Bower; Christiaan Brinkerink; Avery E. Broderick; R. J. Cappallo; Andrew A. Chael; Geoffrey Crew; Jason Dexter; Matt Dexter; Robert Freund; Per Friberg; Roman Gold; M. A. Gurwell; Paul T. P. Ho; Mareki Honma; Makoto Inoue; Michael Kosowsky; T. P. Krichbaum; James W. Lamb; Abraham Loeb

Magnetic fields near the event horizon Astronomers have long sought to examine a black holes event horizon—the boundary around the black hole within which nothing can escape. Johnson et al. used sophisticated interferometry techniques to combine data from millimeter-wavelength telescopes around the world. They measured polarization just outside the event horizon of Sgr A*, the supermassive black hole at the center of our galaxy, the Milky Way. The polarization is a signature of ordered magnetic fields generated in the accretion disk around the black hole. The results help to explain how black holes accrete gas and launch jets of material into their surroundings. Science, this issue p. 1242 Magnetic fields around the event horizon of a supermassive black hole have been probed. Near a black hole, differential rotation of a magnetized accretion disk is thought to produce an instability that amplifies weak magnetic fields, driving accretion and outflow. These magnetic fields would naturally give rise to the observed synchrotron emission in galaxy cores and to the formation of relativistic jets, but no observations to date have been able to resolve the expected horizon-scale magnetic-field structure. We report interferometric observations at 1.3-millimeter wavelength that spatially resolve the linearly polarized emission from the Galactic Center supermassive black hole, Sagittarius A*. We have found evidence for partially ordered magnetic fields near the event horizon, on scales of ~6 Schwarzschild radii, and we have detected and localized the intrahour variability associated with these fields.


IEEE Transactions on Antennas and Propagation | 2013

Circular Quadruple-Ridged Flared Horn Achieving Near-Constant Beamwidth Over Multioctave Bandwidth: Design and Measurements

Ahmed Akgiray; Sander Weinreb; William A. Imbriale; Christopher Beaudoin

A circular quadruple-ridged flared horn achieving almost-constant beamwidth over 6:1 bandwidth is presented. This horn is the first demonstration of a wideband feed for radio telescopes which is capable of accommodating different reflector antenna optics, maintains almost constant gain and has excellent match. Measurements of stand-alone horn performance reveal excellent return loss performance as well as stable radiation patterns over 6:1 frequency range. Physical optics calculations predict an average of 69% aperture efficiency and 13 K antenna noise temperature with the horn installed on a radio telescope.


The Astrophysical Journal | 2016

PERSISTENT ASYMMETRIC STRUCTURE OF SAGITTARIUS A* ON EVENT HORIZON SCALES

Vincent L. Fish; Michael D. Johnson; Sheperd S. Doeleman; Avery E. Broderick; Dimitrios Psaltis; Ru-Sen Lu; Kazunori Akiyama; W. Alef; Juan C. Algaba; Keiichi Asada; Christopher Beaudoin; Alessandra Bertarini; L. Blackburn; R. Blundell; Geoffrey C. Bower; Christiaan Brinkerink; R. J. Cappallo; Andrew A. Chael; Richard A. Chamberlin; Chi-kwan Chan; Geoffrey Crew; Jason Dexter; Matt Dexter; Sergio A. Dzib; H. Falcke; Robert Freund; Per Friberg; Christopher Greer; M. A. Gurwell; Paul T. P. Ho

The Galactic Center black hole Sagittarius A* (Sgr A*) is a prime observing target for the Event Horizon Telescope (EHT), which can resolve the 1.3 mm emission from this source on angular scales comparable to that of the general relativistic shadow. Previous EHT observations have used visibility amplitudes to infer the morphology of the millimeter-wavelength emission. Potentially much richer source information is contained in the phases. We report on 1.3 mm phase information on Sgr A* obtained with the EHT on a total of 13 observing nights over 4 years. Closure phases, the sum of visibility phases along a closed triangle of interferometer baselines, are used because they are robust against phase corruptions introduced by instrumentation and the rapidly variable atmosphere. The median closure phase on a triangle including telescopes in California, Hawaii, and Arizona is nonzero. This result conclusively demonstrates that the millimeter emission is asymmetric on scales of a few Schwarzschild radii and can be used to break 180-degree rotational ambiguities inherent from amplitude data alone. The stability of the sign of the closure phase over most observing nights indicates persistent asymmetry in the image of Sgr A* that is not obscured by refraction due to interstellar electrons along the line of sight.


Publications of the Astronomical Society of the Pacific | 2015

R2DBE: A Wideband Digital Backend for the Event Horizon Telescope

Laura Vertatschitsch; Rurik A. Primiani; André Young; Jonathan Weintroub; Geoffrey Crew; S. R. McWhirter; Christopher Beaudoin; Sheperd S. Doeleman; L. Blackburn

The Event Horizon Telescope (EHT) is an earth-size aperture synthesis radio astronomy array capable of making high-resolution measurements of submillimeter emission near the event horizon of supermassive black holes. The EHT uses existing standalone submillimeter radio telescopes which are retrofitted to serve as VLBI stations. Current instrument development goals include increasing the number of stations in the array and increasing their sensitivity. We have developed a 4 GHz bandwidth digital backend (DBE) unit, based on the CASPER (Collaboration for Astronomy Signal Processing and Electronics Research) open source ROACH2 (Reconfigurable Open Architecture Computing Hardware) platform. The ROACH2 digital backend, which we call the R2DBE, has dual channels each sampling at a rate of 4096 MSps (megasamples-per-second), a factor of 4 improvement over the previous generation system. Recording 2-bits per sample, the bandwidth is equivalently stated as 16 gigabits-per-second (Gbps). This paper includes system design of the R2DBE, discusses laboratory test results of the system using correlated noise input, and presents field test results. The R2DBE was distributed to seven sites in early 2015, enabling the EHT campaign in 2015 March to collect data with 2 GHz bandwidth in each polarization. The 16 gigabit-per-second (Gbps) R2DBE can be scaled to create a 64 Gbps system using four R2DBEs in parallel. Thus, it enables a clear path to the EHTs goal of 4 GHz dual-polarization and dual-sideband across the array.


The Astrophysical Journal | 2018

Detection of Intrinsic Source Structure at ~3 Schwarzschild Radii with Millimeter-VLBI Observations of SAGITTARIUS A*

Ru-Sen Lu; T. P. Krichbaum; Alan L. Roy; Vincent L. Fish; Sheperd S. Doeleman; Michael D. Johnson; Kazunori Akiyama; Dimitrios Psaltis; W. Alef; Keiichi Asada; Christopher Beaudoin; Alessandra Bertarini; L. Blackburn; R. Blundell; Geoffrey C. Bower; Christiaan Brinkerink; Avery E. Broderick; R. J. Cappallo; Geoffrey Crew; Jason Dexter; Matt Dexter; H. Falcke; Robert Freund; Per Friberg; Christopher Greer; M. A. Gurwell; Paul T. P. Ho; Mareki Honma; Makoto Inoue; J. S. Kim

We report results from very long baseline interferometric (VLBI) observations of the supermassive black hole in the Galactic center, Sgr A*, at 1.3 mm (230 GHz). The observations were performed in 2013 March using six VLBI stations in Hawaii, California, Arizona, and Chile. Compared to earlier observations, the addition of the APEX telescope in Chile almost doubles the longest baseline length in the array, provides additional uv coverage in the N-S direction, and leads to a spatial resolution of similar to 30 mu as (similar to 3 Schwarzschild radii) for Sgr A*. The source is detected even at the longest baselines with visibility amplitudes of similar to 4%-13% of the total flux density. We argue that such flux densities cannot result from interstellar refractive scattering alone, but indicate the presence of compact intrinsic source structure on scales of similar to 3 Schwarzschild radii. The measured nonzero closure phases rule out point-symmetric emission. We discuss our results in the context of simple geometric models that capture the basic characteristics and brightness distributions of disk-and jet-dominated models and show that both can reproduce the observed data. Common to these models are the brightness asymmetry, the orientation, and characteristic sizes, which are comparable to the expected size of the black hole shadow. Future 1.3 mm VLBI observations with an expanded array and better sensitivity will allow more detailed imaging of the horizon-scale structure and bear the potential for a deep insight into the physical processes at the black hole boundary.


arXiv: Instrumentation and Methods for Astrophysics | 2018

A VLBI receiving system for the South Pole Telescope

J. S. Kim; D. P. Marrone; Christopher Beaudoin; J. E. Carlstrom; Shepherd S. Doeleman; Thomas W. Folkers; David C. Forbes; Christopher Greer; E. F. Lauria; Kyle D. Massingill; Evan Mayer; Chi H. Nguyen; George P. Reiland; Jason SooHoo; A. A. Stark; Laura Vertatschitsch; Jonathan Weintroub; André Young

The Event Horizon Telescope (EHT) is a very-long-baseline interferometry (VLBI) experiment that aims to observe supermassive black holes with an angular resolution that is comparable to the event horizon scale. The South Pole occupies an important position in the array, greatly increasing its north-south extent and therefore its resolution. The South Pole Telescope (SPT) is a 10-meter diameter, millimeter-wavelength telescope equipped for bolometric observations of the cosmic microwave background. To enable VLBI observations with the SPT we have constructed a coherent signal chain suitable for the South Pole environment. The dual-frequency receiver incorporates state-of-the-art SIS mixers and is installed in the SPT receiver cabin. The VLBI signal chain also includes a recording system and reference frequency generator tied to a hydrogen maser. Here we describe the SPT VLBI system design in detail and present both the lab measurements and on-sky results.


The Astrophysical Journal | 2018

The 1.4 mm Core of Centaurus A: First VLBI Results with the South Pole Telescope

Junhan Kim; D. P. Marrone; Alan L. Roy; Jan Wagner; Keiichi Asada; Christopher Beaudoin; C. Müller; Remo P. J. Tilanus; Jonathan Weintroub; J. A. Zensus

Centaurus A (Cen A) is a bright radio source associated with the nearby galaxy NGC 5128 where high-resolution radio observations can probe the jet at scales of less than a light-day. The South Pole Telescope (SPT) and the Atacama Pathfinder Experiment (APEX) performed a single-baseline very-long-baseline interferometry (VLBI) observation of Cen A in January 2015 as part of VLBI receiver deployment for the SPT. We measure the correlated flux density of Cen A at a wavelength of 1.4 mm on a

Collaboration


Dive into the Christopher Beaudoin's collaboration.

Top Co-Authors

Avatar

Geoffrey Crew

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jason SooHoo

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Alan E. E. Rogers

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Arthur Niell

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

B. E. Corey

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chester A. Ruszczyk

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel L. Smythe

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge