Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan Wright is active.

Publication


Featured researches published by Jonathan Wright.


Genome Research | 2017

An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations

Bernardo Clavijo; Luca Venturini; Christian Schudoma; Gonzalo Garcia Accinelli; Gemy Kaithakottil; Jonathan Wright; Philippa Borrill; George Kettleborough; Darren Heavens; Helen D. Chapman; James Lipscombe; Tom Barker; Fu-Hao Lu; Neil McKenzie; Dina Raats; Ricardo H. Ramirez-Gonzalez; Aurore Coince; Ned Peel; Lawrence Percival-Alwyn; Owen Duncan; Josua Trösch; Guotai Yu; Dan Bolser; Guy Namaati; Arnaud Kerhornou; Manuel Spannagl; Heidrun Gundlach; Georg Haberer; Robert Davey; Christine Fosker

Advances in genome sequencing and assembly technologies are generating many high-quality genome sequences, but assemblies of large, repeat-rich polyploid genomes, such as that of bread wheat, remain fragmented and incomplete. We have generated a new wheat whole-genome shotgun sequence assembly using a combination of optimized data types and an assembly algorithm designed to deal with large and complex genomes. The new assembly represents >78% of the genome with a scaffold N50 of 88.8 kb that has a high fidelity to the input data. Our new annotation combines strand-specific Illumina RNA-seq and Pacific Biosciences (PacBio) full-length cDNAs to identify 104,091 high-confidence protein-coding genes and 10,156 noncoding RNA genes. We confirmed three known and identified one novel genome rearrangements. Our approach enables the rapid and scalable assembly of wheat genomes, the identification of structural variants, and the definition of complete gene models, all powerful resources for trait analysis and breeding of this key global crop.


Plant Biotechnology Journal | 2010

Distribution and characterization of more than 1000 T-DNA tags in the genome of Brachypodium distachyon community standard line Bd21

Vera Thole; Barbara Worland; Jonathan Wright; Michael W. Bevan; Philippe Vain

A collection of 4117 fertile T-DNA lines has been generated by Agrobacterium-mediated transformation of the diploid community standard line Bd21 of Brachypodium distachyon. The regions flanking the T-DNA left and right borders of the first 741 transformed plants were isolated by adapter-ligation PCR and sequenced. A total of 1005 genomic sequences (representing 44.1% of all flanking sequences retrieved) characterized 660 independent T-DNA loci assigned to a unique location in the Brachypodium genome sequence. Seventy-six percent of the fertile plant lines contained at least one anchored T-DNA locus (1.17 loci per tagged line on average). Analysis of the regions flanking both borders of the T-DNA increased the number of T-DNA loci tagged and the number of tagged lines by approximately 50% when compared to a single border analysis. T-DNA integration (2.4 insertions per Mb on average) was proportional to chromosome size, however, varied greatly along each chromosome with often low insertion level around centromeres. The frequency of insertion within transposable elements (5.3%) was fivefold lower than expected if random insertion would have occurred. More than half of the T-DNAs inserted in genic regions. On average, one gene could be tagged for every second fertile plant line produced and more than one plant line out of three contained a T-DNA insertion directly within or 500 bp around the coding sequence. Approximately, 60% of the genes tagged corresponded to expressed genes. The T-DNA lines generated by the BrachyTAG programme are available as a community resource and have been distributed internationally since 2008 via the BrachyTAG.org web site.


PLOS ONE | 2010

An integrated physical, genetic and cytogenetic map of Brachypodium distachyon, a model system for grass research.

Melanie Febrer; Jose Luis Goicoechea; Jonathan Wright; Neil McKenzie; Xiang Song; Jinke Lin; Kristi Collura; Marina Wissotski; Yeisoo Yu; Jetty S. S. Ammiraju; Elzbieta Wolny; Dominika Idziak; Alexander Betekhtin; Dave Kudrna; Robert Hasterok; Rod A. Wing; Michael W. Bevan

The pooid subfamily of grasses includes some of the most important crop, forage and turf species, such as wheat, barley and Lolium. Developing genomic resources, such as whole-genome physical maps, for analysing the large and complex genomes of these crops and for facilitating biological research in grasses is an important goal in plant biology. We describe a bacterial artificial chromosome (BAC)-based physical map of the wild pooid grass Brachypodium distachyon and integrate this with whole genome shotgun sequence (WGS) assemblies using BAC end sequences (BES). The resulting physical map contains 26 contigs spanning the 272 Mb genome. BES from the physical map were also used to integrate a genetic map. This provides an independent vaildation and confirmation of the published WGS assembly. Mapped BACs were used in Fluorescence In Situ Hybridisation (FISH) experiments to align the integrated physical map and sequence assemblies to chromosomes with high resolution. The physical, genetic and cytogenetic maps, integrated with whole genome shotgun sequence assemblies, enhance the accuracy and durability of this important genome sequence and will directly facilitate gene isolation.


Chromosoma | 2011

Painting the chromosomes of Brachypodium—current status and future prospects

Dominika Idziak; Alexander Betekhtin; Elzbieta Wolny; Karolina Lesniewska; Jonathan Wright; Melanie Febrer; Michael W. Bevan; Glyn Jenkins; Robert Hasterok

Chromosome painting is one of the most powerful and spectacular tools of modern molecular cytogenetics, enabling complex analyses of nuclear genome structure and evolution. For many years, this technique was restricted to the study of mammalian chromosomes, as it failed to work in plant genomes due mainly to the presence of large amounts of repetitive DNA common to all the chromosomes of the complement. The availability of ordered, chromosome-specific BAC clones of Arabidopsis thaliana containing relatively little repetitive genomic DNA enabled the first chromosome painting in dicotyledonous plants. Here, we show for the first time chromosome painting in three different cytotypes of a monocotyledonous plant—the model grass, Brachypodium distachyon. Possible directions of further detailed studies are proposed, such as the evolution of grass karyotypes, the behaviour of meiotic chromosomes, and the analysis of chromosome distribution at interphase.


Nature plants | 2016

Genetic architecture and evolution of the S locus supergene in Primula vulgaris

Jinhong Li; Jonathan M. Cocker; Jonathan Wright; Margaret A. Webster; Mark McMullan; Sarah Dyer; David Swarbreck; Mario Caccamo; Cock van Oosterhout; Philip M. Gilmartin

Darwins studies on heterostyly in Primula described two floral morphs, pin and thrum, with reciprocal anther and stigma heights that promote insect-mediated cross-pollination. This key innovation evolved independently in several angiosperm families. Subsequent studies on heterostyly in Primula contributed to the foundation of modern genetic theory and the neo-Darwinian synthesis. The established genetic model for Primula heterostyly involves a diallelic S locus comprising several genes, with rare recombination events that result in self-fertile homostyle flowers with anthers and stigma at the same height. Here we reveal the S locus supergene as a tightly linked cluster of thrum-specific genes that are absent in pins. We show that thrums are hemizygous not heterozygous for the S locus, which suggests that homostyles do not arise by recombination between S locus haplotypes as previously proposed. Duplication of a floral homeotic gene 51.7 million years (Myr) ago, followed by its neofunctionalization, created the current S locus assemblage which led to floral heteromorphy in Primula. Our findings provide new insights into the structure, function and evolution of this archetypal supergene.


PLOS ONE | 2014

Efficacy of Anti-VEGF and Laser Photocoagulation in the Treatment of Visual Impairment due to Diabetic Macular Edema: A Systematic Review and Network Meta-Analysis

Sa Regnier; William Malcolm; Felicity Allen; Jonathan Wright; Vladimir Bezlyak

Objective Compare the efficacy of ranibizumab, aflibercept, laser, and sham in the first-line treatment of diabetic macular edema (DME) to inform technology assessments such as those conducted by the UK National Institute for Health and Care Excellence (NICE). Data sources MEDLINE, Embase, Cochrane Library, congress abstracts, ClinicalTrials.gov registry and Novartis data on file. Inclusion criteria Studies reporting 6- or 12-month results of randomized controlled trials (RCTs) evaluating at least two of ranibizumab 0.5 mg pro re nata, aflibercept 2.0 mg bi-monthly, laser photocoagulation or sham. Study quality was assessed based on likelihood of bias in selection, attrition, detection and performance. Outcome measure Improvement in best-corrected visual acuity (BCVA) measured as the proportion of patients gaining ≥10 letters on the Early Treatment Diabetic Retinopathy Study scale. The outcome was chosen following acceptance by NICE of a Markov model with 10-letter health states in the assessment of ranibizumab for DME. Meta-analysis Bayesian network meta-analyses with fixed and random effects adjusted for differences in baseline BCVA or central retinal thickness. Results The analysis included 1,978 patients from eight RCTs. The random effects model adjusting for baseline BCVA was the best model based on total residual. The efficacy of ranibizumab was numerically, but not statistically, superior to aflibercept (odds ratio [OR] 1.59; 95% credible interval [CrI], 0.61–5.37). Ranibizumab and aflibercept were statistically superior to laser monotherapy with ORs of 5.50 (2.73–13.16) and 3.45 (1.62–6.84) respectively. The probability that ranibizumab is the most efficacious treatment was 73% compared with 14% for aflibercept, 12% for ranibizumab plus laser, and 0% for laser. Limitations Three of the eight RCTs included are not yet published. The models did not adjust for all potential effect modifiers. Conclusion Ranibizumab was non-significantly superior to aflibercept and both anti-VEGF therapies had statistically superior efficacy to laser.


Bioinformatics | 2016

KAT: A K-mer Analysis Toolkit to quality control NGS datasets and genome assemblies

Daniel Mapleson; Gonzalo Garcia Accinelli; George Kettleborough; Jonathan Wright; Bernardo Clavijo

Motivation: De novo assembly of whole genome shotgun (WGS) next‐generation sequencing (NGS) data benefits from high‐quality input with high coverage. However, in practice, determining the quality and quantity of useful reads quickly and in a reference‐free manner is not trivial. Gaining a better understanding of the WGS data, and how that data is utilized by assemblers, provides useful insights that can inform the assembly process and result in better assemblies. Results: We present the K‐mer Analysis Toolkit (KAT): a multi‐purpose software toolkit for reference‐free quality control (QC) of WGS reads and de novo genome assemblies, primarily via their k‐mer frequencies and GC composition. KAT enables users to assess levels of errors, bias and contamination at various stages of the assembly process. In this paper we highlight KATs ability to provide valuable insights into assembly composition and quality of genome assemblies through pairwise comparison of k‐mers present in both input reads and the assemblies. Availability and Implementation: KAT is available under the GPLv3 license at: https://github.com/TGAC/KAT. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


Genome | 2009

Rapid identification of the three homoeologues of the wheat dwarfing gene Rht using a novel PCR-based screen of three-dimensional BAC pools

Melanie Febrer; Ed WilhelmE. Wilhelm; Nadia Al-KaffN. Al-Kaff; Jonathan Wright; W. Powell; Michael W. Bevan; Margaret I. Boulton

A high-throughput two-step PCR strategy for the identification of selected genes from a BAC library derived from hexaploid wheat (16,974 Mbp) is described. The screen is based on the pooling of DNA from BAC clones into 675 superpools arrayed in a three-dimensional configuration. Each BAC clone is represented in three superpools to allow the identification of candidate 384-well plates of clones after the first round of PCR; identification is facilitated by an associated Perl script. A second round of PCR detects the specific BAC clone within the candidate plate that corresponds to the gene of interest. Thus, a single copy of the target gene can be identified from the library of over 700,000 clones (approximately 5 genome equivalents) by assaying only three 384-well plates. The pooling strategy was validated by screening the library with primers specific for the reduced height (Rht-1a) gene. Using relatively stringent selection criteria, 13 Rht-containing clones were identified from 17 candidate plates, and sequence analysis of the amplified products showed that all three Rht homoeologues were represented. Furthermore, the method confirmed the estimated coverage of the BAC library. Thus, this methodology allows the rapid and cost-effective identification of genes, and their homoeologues, from large-insert libraries of complex genomes such as hexaploid wheat.


Genome | 2009

Tandem duplication of the fabp1b gene and subsequent divergence of the tissue-specific distribution of fabp1b.1 and fabp1b.2 transcripts in zebrafish (Danio rerio).

SanthoshKaranthS. Karanth; Eileen M. Denovan-Wright; ChristineThisseC. Thisse; BernardThisseB. Thisse; Jonathan Wright

We describe a fatty acid-binding protein 1 (fabp1b.2) gene and its tissue-specific expression in zebrafish embryos and adults. The 3.5 kb zebrafish fabp1b.2 gene is the paralog of the previously described zebrafish fabp1a and fabp1b genes. Using the LN54 radiation hybrid mapping panel, we assigned the zebrafish fabp1b.2 gene to linkage group 8, the same linkage group to which fabp1b.1 was mapped. fabp1b.1 and fabp1b.2 appear to have arisen by a tandem duplication event. Whole-mount in situ hybridization of a riboprobe to embryos and larvae detected fabp1b.2 transcripts in the diencephalon and as spots in the periphery of the yolk sac. In adult zebrafish, in situ hybridization revealed fabp1b.2 transcripts in the anterior intestine and skin, and reverse transcription PCR (RT-PCR) detected fabp1b.2 transcripts in the intestine, brain, heart, ovary, skin, and eye. By contrast, fabp1b.1 transcripts were detected by RT-PCR in the liver, intestine, heart, testis, ovary, and gills. The tissue-specific distribution of transcripts for the tandemly duplicated fabp1b.1 and fabp1b.2 genes in adult tissues and during development suggests that the duplicated fabp1b genes of zebrafish have acquired additional functions compared with the ancestral fabp1 gene, i.e., by neofunctionalization. Furthermore, these functions were subsequently divided between fabp1b.1 and fabp1b.2 owing to subfunctionalization.


New Phytologist | 2015

Integration of genetic and physical maps of the Primula vulgaris S locus and localization by chromosome in situ hybridization

Jinhong Li; Margaret A. Webster; Jonathan Wright; Jonathan M. Cocker; Matthew C. Smith; Farah Badakshi; Pat Heslop-Harrison; Philip M. Gilmartin

Summary Heteromorphic flower development in Primula is controlled by the S locus. The S locus genes, which control anther position, pistil length and pollen size in pin and thrum flowers, have not yet been characterized. We have integrated S‐linked genes, marker sequences and mutant phenotypes to create a map of the P. vulgaris S locus region that will facilitate the identification of key S locus genes. We have generated, sequenced and annotated BAC sequences spanning the S locus, and identified its chromosomal location. We have employed a combination of classical genetics and three‐point crosses with molecular genetic analysis of recombinants to generate the map. We have characterized this region by Illumina sequencing and bioinformatic analysis, together with chromosome in situ hybridization. We present an integrated genetic and physical map across the P. vulgaris S locus flanked by phenotypic and DNA sequence markers. BAC contigs encompass a 1.5‐Mb genomic region with 1 Mb of sequence containing 82 S‐linked genes anchored to overlapping BACs. The S locus is located close to the centromere of the largest metacentric chromosome pair. These data will facilitate the identification of the genes that orchestrate heterostyly in Primula and enable evolutionary analyses of the S locus.

Collaboration


Dive into the Jonathan Wright's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge