Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jong Ho Won is active.

Publication


Featured researches published by Jong Ho Won.


Jaro-journal of The Association for Research in Otolaryngology | 2007

Spectral-Ripple Resolution Correlates with Speech Reception in Noise in Cochlear Implant Users

Jong Ho Won; Ward R. Drennan; Jay T. Rubinstein

Speech perception ability in noise is one of the most practical measures of success with a cochlear implant; however, with experience, this ability can change dramatically over time, making it a less than ideal tool for comparing performance among different processing strategies. This study examined performance on a spectral discrimination task and compared it to speech perception in noise. An adaptive procedure was used to determine the spectral-ripple density that subjects could discriminate. A closed-set, forced-choice adaptive procedure was used to determine speech reception thresholds for words in two-talker babble and in speech-shaped, steady-state noise. Spectral-ripple thresholds (ripples/octave) were significantly correlated with speech reception thresholds (dB SNR) in noise for 29 cochlear implant users (ru2009=u2009−0.55, pu2009=u20090.002 in two-talker babble; ru2009=u2009−0.62, pu2009=u20090.0004 in steady-state noise), demonstrating that better spectral resolution was associated with better speech perception in noise. A significant correlation was also found between the spectral-ripple discrimination ability and word recognition in quiet (ru2009=u20090.50, pu2009=u20090.009). In addition, test–retest reliability for spectral-ripple discrimination was good, and no learning was observed. The present study demonstrates that the spectral-ripple discrimination test, which is time efficient and nonlinguistic, would be a useful tool to evaluate cochlear implant performance with different signal processing strategies.


Ear and Hearing | 2009

Development and validation of the University of Washington Clinical Assessment of Music Perception test.

Robert S. Kang; Grace L. Nimmons; Ward R. Drennan; Jeff Longnion; Chad Ruffin; Kaibao Nie; Jong Ho Won; Tina Worman; Bevan Yueh; Jay T. Rubinstein

Objectives: Assessment of cochlear implant outcomes centers around speech discrimination. Despite dramatic improvements in speech perception, music perception remains a challenge for most cochlear implant users. No standardized test exists to quantify music perception in a clinically practical manner. This study presents the University of Washington Clinical Assessment of Music Perception (CAMP) test as a reliable and valid music perception test for English-speaking, adult cochlear implant users. Design: Forty-two cochlear implant subjects were recruited from the University of Washington Medical Center cochlear implant program and referred by two implant manufacturers. Ten normal-hearing volunteers were drawn from the University of Washington Medical Center and associated campuses. A computer-driven, self-administered test was developed to examine three specific aspects of music perception: pitch direction discrimination, melody recognition, and timbre recognition. The pitch subtest used an adaptive procedure to determine just-noticeable differences for complex tone pitch direction discrimination within the range of 1 to 12 semitones. The melody and timbre subtests assessed recognition of 12 commonly known melodies played with complex tones in an isochronous manner and eight musical instruments playing an identical five-note sequence, respectively. Testing was repeated for cochlear implant subjects to evaluate test-retest reliability. Normal-hearing volunteers were also tested to demonstrate differences in performance in the two populations. Results: For cochlear implant subjects, pitch direction discrimination just-noticeable differences ranged from 1 to 8.0 semitones (Mean = 3.0, SD = 2.3). Melody and timbre recognition ranged from 0 to 94.4% correct (mean = 25.1, SD = 22.2) and 20.8 to 87.5% (mean = 45.3, SD = 16.2), respectively. Each subtest significantly correlated at least moderately with both Consonant-Nucleus-Consonant (CNC) word recognition scores and spondee recognition thresholds in steady state noise and two-talker babble. Intraclass coefficients demonstrating test-retest correlations for pitch, melody, and timbre were 0.85, 0.92, and 0.69, respectively. Normal-hearing volunteers had a mean pitch direction discrimination threshold of 1.0 semitone, the smallest interval tested, and mean melody and timbre recognition scores of 87.5 and 94.2%, respectively. Conclusions: The CAMP test discriminates a wide range of music perceptual ability in cochlear implant users. Moderate correlations were seen between music test results and both Consonant-Nucleus-Consonant word recognition scores and spondee recognition thresholds in background noise. Test-retest reliability was moderate to strong. The CAMP test provides a reliable and valid metric for a clinically practical, standardized evaluation of music perception in adult cochlear implant users.


Journal of the Acoustical Society of America | 2011

Acoustic temporal modulation detection and speech perception in cochlear implant listeners

Jong Ho Won; Ward R. Drennan; Kaibao Nie; Elyse Jameyson; Jay T. Rubinstein

The goals of the present study were to measure acoustic temporal modulation transfer functions (TMTFs) in cochlear implant listeners and examine the relationship between modulation detection and speech recognition abilities. The effects of automatic gain control, presentation level and number of channels on modulation detection thresholds (MDTs) were examined using the listeners clinical sound processor. The general form of the TMTF was low-pass, consistent with previous studies. The operation of automatic gain control had no effect on MDTs when the stimuli were presented at 65 dBA. MDTs were not dependent on the presentation levels (ranging from 50 to 75 dBA) nor on the number of channels. Significant correlations were found between MDTs and speech recognition scores. The rates of decay of the TMTFs were predictive of speech recognition abilities. Spectral-ripple discrimination was evaluated to examine the relationship between temporal and spectral envelope sensitivities. No correlations were found between the two measures, and 56% of the variance in speech recognition was predicted jointly by the two tasks. The present study suggests that temporal modulation detection measured with the sound processor can serve as a useful measure of the ability of clinical sound processing strategies to deliver clinically pertinent temporal information.


Ear and Hearing | 2010

Psychoacoustic Abilities Associated With Music Perception in Cochlear Implant Users

Jong Ho Won; Ward R. Drennan; Robert S. Kang; Jay T. Rubinstein

Objectives: This study was designed to determine what acoustic elements are associated with musical perception ability in cochlear implant (CI) users and to understand how acoustic elements, which are important to good speech perception, contribute to music perception in CI users. It was hypothesized that the variability in the performance of music and speech perception may be related to differences in the sensitivity to specific acoustic features such as spectral changes or temporal modulations, or both. Design: A battery of hearing tasks was administered to 42 CI listeners. The Clinical Assessment of Music Perception was used, which evaluates complex-tone pitch-direction discrimination, melody recognition, and timbre recognition. To investigate spectral and temporal processing, spectral-ripple discrimination and Schroeder-phase discrimination abilities were evaluated. Speech perception ability in quiet and noise was also evaluated. Relationships between Clinical Assessment of Music Perception subtest scores, spectral-ripple discrimination thresholds, Schroeder-phase discrimination scores, and speech recognition scores were assessed. Results: Spectral-ripple discrimination was shown to correlate with all three aspects of music perception studied. Schroeder-phase discrimination was generally not predictive of music perception outcomes. Music perception ability was significantly correlated with speech perception ability. Nearly half of the variance in melody and timbre recognition was predicted jointly by spectral-ripple and pitch-direction discrimination thresholds. Similar results were observed on speech recognition as well. Conclusions: This study suggests that spectral-ripple discrimination is significantly associated with music perception in CI users. A previous report showed that spectral-ripple discrimination is significantly correlated with speech recognition in quiet and in noise. This study also showed that speech recognition and music perception are also related to one another. Spectral-ripple discrimination ability seems to reflect a wide range of hearing abilities in CI users. The results suggest that materially improving spectral resolution could provide significant benefits in music and speech perception outcomes in CI users.


Hearing Research | 2010

Sensitivity of psychophysical measures to signal processor modifications in cochlear implant users

Ward R. Drennan; Jong Ho Won; Kaibao Nie; Elyse Jameyson; Jay T. Rubinstein

Experienced users of the Clarion cochlear implant were tested acutely with the HiResolution (HiRes) and HiRes Fidelity120 (F120) processing strategies. Three psychophysically-based tests were used including spectral-ripple discrimination, Schroeder-phase discrimination and temporal modulation detection. Three clinical outcome measures were used including consonant-nucleus-consonant (CNC) word recognition in quiet, word recognition in noise and the clinical assessment of music perception (CAMP). Listeners spectral-ripple discrimination ability improved with F120, but Schroeder-phase discrimination was worse with F120 than with HiRes. Listeners who had better than average acuity showed the biggest effects. There were no significant effects of the processing strategy on any of the clinical abilities nor on temporal modulation detection. Additionally, the listeners day-to-day clinical strategy did not appear to influence the result suggesting that experience with the strategies did not play a significant role. The results underscore the value of acoustic psychophysical measures through the sound processor as a tool in clinical research, because these measures are more sensitive to changes in the processing strategies than traditional clinical measures, e.g. speech understanding. The measures allow for the evaluation of sensitivity to specific acoustic attributes revealing the extent to which different processing strategies affect these basic abilities and could thus improve the efficiency of the development of processing strategies.


Jaro-journal of The Association for Research in Otolaryngology | 2007

Effects of Temporal Fine Structure on the Lateralization of Speech and on Speech Understanding in Noise

Ward R. Drennan; Jong Ho Won; Vasant K. Dasika; Jay T. Rubinstein

This study evaluated the role of temporal fine structure in the lateralization and understanding of speech in six normal-hearing listeners. Interaural time differences (ITDs) were introduced to invoke lateralization. Speech reception thresholds (SRTs) were evaluated in backgrounds of two-talker babble and speech-shaped noise. Two-syllable words with ITDs of 0 and 700xa0μs were used as targets. A vocoder technique, which systematically randomized fine structure, was used to evaluate the effects of fine structure on these tasks. Randomization of temporal fine structure was found to significantly reduce the ability of normal-hearing listeners to lateralize words, although for many listeners, good lateralization performance was achieved with as much as 80% fine-structure randomization. Most listeners demonstrated some rudimentary ability to lateralize with 100% fine-structure randomization. When ITDs were 0xa0μs, randomization of fine structure had a much greater effect on SRT in two-talker babble than in speech-shaped noise. Binaural advantages were also observed. In steady noise, the difference in SRT between words with 0- vs 700-μs ITDs was, on average, 6xa0dB with no fine-structure randomization and 2xa0dB with 100% fine-structure randomization. In two-talker babble this difference was 1.9xa0dB and, for most listeners, showed little effect of the degree of fine-structure randomization. These results suggest that (1) improved delivery of temporal fine structure would improve speech understanding in noise for implant recipients, (2) bilateral implant recipients might benefit from temporal envelope ITDs, and (3) improved delivery of temporal information could improve binaural benefits.


Jaro-journal of The Association for Research in Otolaryngology | 2011

Relationship Between Behavioral and Physiological Spectral-Ripple Discrimination

Jong Ho Won; C. Clinard; Seeyoun Kwon; Vasant K. Dasika; Kaibao Nie; Ward R. Drennan; Kelly L. Tremblay; Jay T. Rubinstein

Previous studies have found a significant correlation between spectral-ripple discrimination and speech and music perception in cochlear implant (CI) users. This relationship could be of use to clinicians and scientists who are interested in using spectral-ripple stimuli in the assessment and habilitation of CI users. However, previous psychoacoustic tasks used to assess spectral discrimination are not suitable for all populations, and it would be beneficial to develop methods that could be used to test all age ranges, including pediatric implant users. Additionally, it is important to understand how ripple stimuli are processed in the central auditory system and how their neural representation contributes to behavioral performance. For this reason, we developed a single-interval, yes/no paradigm that could potentially be used both behaviorally and electrophysiologically to estimate spectral-ripple threshold. In experiment 1, behavioral thresholds obtained using the single-interval method were compared to thresholds obtained using a previously established three-alternative forced-choice method. A significant correlation was found (ru2009=u20090.84, pu2009=u20090.0002) in 14 adult CI users. The spectral-ripple threshold obtained using the new method also correlated with speech perception in quiet and noise. In experiment 2, the effect of the number of vocoder-processing channels on the behavioral and physiological threshold in normal-hearing listeners was determined. Behavioral thresholds, using the new single-interval method, as well as cortical P1-N1-P2 responses changed as a function of the number of channels. Better behavioral and physiological performance (i.e., better discrimination ability at higher ripple densities) was observed as more channels added. In experiment 3, the relationship between behavioral and physiological data was examined. Amplitudes of the P1-N1-P2 “change” responses were significantly correlated with d′ values from the single-interval behavioral procedure. Results suggest that the single-interval procedure with spectral-ripple phase inversion in ongoing stimuli is a valid approach for measuring behavioral or physiological spectral resolution.


Audiology and Neuro-otology | 2012

Psychoacoustic performance and music and speech perception in prelingually deafened children with cochlear implants.

Kyu Hwan Jung; Jong Ho Won; Ward R. Drennan; Elyse Jameyson; Gary Miyasaki; Susan J. Norton; Jay T. Rubinstein

The number of pediatric cochlear implant (CI) recipients has increased substantially over the past 10 years, and it has become more important to understand the underlying mechanisms of the variable outcomes in this population. In this study, psychoacoustic measures of spectral-ripple and Schroeder-phase discrimination, the Clinical Assessment of Music Perception, and consonant-nucleus-consonant (CNC) word recognition in quiet and spondee reception threshold (SRT) in noise tests have been presented to 11 prelingually deafened CI users, aged 8–16 years with at least 5 years of CI experience. The children’s performance was compared to the previously reported results of postlingually deafened adult CI users. The average spectral-ripple threshold (n = 10) was 2.08 ripples/octave. The average Schroeder-phase discrimination was 67.3% for 50 Hz and 56.5% for 200 Hz (n = 9). The Clinical Assessment of Music Perception test showed that the average complex pitch direction discrimination was 2.98 semitones. The mean melody score was at a chance level, and the mean timbre score was 34.1% correct. The mean CNC word recognition score was 68.6%, and the mean SRT in steady noise was –8.5 dB SNR. The children’s spectral-ripple resolution, CNC word recognition, and SRT in noise performances were, within statistical bounds, the same as in a population of postlingually deafened adult CI users. However, Schroeder-phase discrimination and music perception were generally poorer than in the adults. It is possible then that this poorer performance seen in the children might be partly accounted for by the delayed maturation in their temporal processing ability, and because of this, the children’s performance may have been driven more by their spectral sensitivity.


Otology & Neurotology | 2012

Spectral and temporal measures in hybrid cochlear implant users: on the mechanism of electroacoustic hearing benefits.

Justin S. Golub; Jong Ho Won; Ward R. Drennan; Tina Worman; Jay T. Rubinstein

Objective Compare auditory performance of Hybrid and standard cochlear implant users with psychoacoustic measures of spectral and temporal sensitivity and correlate with measures of clinical benefit. Study Design Cross-sectional study. Setting Tertiary academic medical center. Patients Hybrid cochlear implant users between 12 and 33 months after implantation. Hybrid recipients had preservation of low-frequency hearing. Interventions Administration of psychoacoustic, music perception, and speech reception in noise tests. Main Outcome Measures Performance on spectral-ripple discrimination, temporal modulation detection, Schroeder-phase discrimination, Clinical Assessment of Music Perception, and speech reception in steady-state noise tests. Results Clinical Assessment of Music Perception pitch performance at 262 Hz was significantly better in Hybrid users compared with standard implant controls. There was a near significant difference on speech reception in steady-state noise. Surprisingly, neither Schroeder-phase discrimination at 2 frequencies nor temporal modulation detection thresholds across a range of frequencies revealed any advantage in Hybrid users. This contrasts with spectral-ripple measures that were significantly better in the Hybrid group. The spectral-ripple advantage was preserved even when using only residual hearing. Conclusion These preliminary data confirm existing data demonstrating that residual low-frequency acoustic hearing is advantageous for pitch perception. Results also suggest that clinical benefits enjoyed by Hybrid recipients are due to improved spectral discrimination provided by the residual hearing. No evidence indicated that residual hearing provided temporal information beyond that provided by electric stimulation.


Journal of the Acoustical Society of America | 2011

Evidence of across-channel processing for spectral-ripple discrimination in cochlear implant listeners.

Jong Ho Won; Gary L. Jones; Ward R. Drennan; Elyse Jameyson; Jay T. Rubinstein

Spectral-ripple discrimination has been used widely for psychoacoustical studies in normal-hearing, hearing-impaired, and cochlear implant listeners. The present study investigated the perceptual mechanism for spectral-ripple discrimination in cochlear implant listeners. The main goal of this study was to determine whether cochlear implant listeners use a local intensity cue or global spectral shape for spectral-ripple discrimination. The effect of electrode separation on spectral-ripple discrimination was also evaluated. Results showed that it is highly unlikely that cochlear implant listeners depend on a local intensity cue for spectral-ripple discrimination. A phenomenological model of spectral-ripple discrimination, as an ideal observer, showed that a perceptual mechanism based on discrimination of a single intensity difference cannot account for performance of cochlear implant listeners. Spectral modulation depth and electrode separation were found to significantly affect spectral-ripple discrimination. The evidence supports the hypothesis that spectral-ripple discrimination involves integrating information from multiple channels.

Collaboration


Dive into the Jong Ho Won's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kaibao Nie

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Elyse Jameyson

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Clinard

James Madison University

View shared research outputs
Top Co-Authors

Avatar

Gary L. Jones

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Les E. Atlas

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Robert S. Kang

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Tina Worman

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge