Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Clinard is active.

Publication


Featured researches published by C. Clinard.


Hearing Research | 2010

Aging alters the perception and physiological representation of frequency: evidence from human frequency-following response recordings.

C. Clinard; Kelly L. Tremblay; Ananthanarayan Krishnan

Older adults, even with clinically normal hearing sensitivity, have auditory perceptual deficits relative to their younger counterparts. This difficulty may in part, be related to a decline in the neural representation of frequency. The purpose of this study was to examine the effect of age on behavioral and physiological measures of frequency representation. Thirty two adults (ages 22-77), with hearing thresholds 25 dB HL at octave frequencies 0.25-8.0 kHz, participated in this experiment. Frequency discrimination difference limens (FDLs) were obtained at 500 and 1000 Hz using a two-interval, two-alternative forced choice procedure. Linear regression analyses showed significant declines in FDLs at both frequencies as age increased. Frequency-following responses (FFRs) were elicited by 500 and 1000 Hz tonebursts, as well as at frequencies within and outside those FDLs. Linear regression of FFR phase coherence and FFR amplitude at frequencies at and slightly below 1000 Hz showed significant decreases as age increased. Therefore, pitch discrimination, as measured by FDLs, and neural representation of frequency, as reflected by FFR, declined as age increased. Although perception and neural representation concurrently declined, one was not predictive of the other.


Journal of The American Academy of Audiology | 2013

Aging degrades the neural encoding of simple and complex sounds in the human brainstem.

C. Clinard; Kelly L. Tremblay

BACKGROUND Older adults, with or without normal peripheral hearing sensitivity, have difficulty understanding speech. This impaired speech perception may, in part, be due to desynchronization affecting the neural representation of acoustic features. Here we determine if phase-locked neural activity generating the brainstem frequency-following response (FFR) exhibits age-related desynchronization and how this degradation affects the neural representation of simple and complex sounds. PURPOSE The objectives of this study were to (1) characterize the effects of age on the neural representation of simple tones and complex consonant-vowel stimuli, (2) determine if sustained and transient components of the FFR are differentially affected by age, and (3) determine if the inability to encode a simple signal predicts degradation in representation for complex speech signals. RESEARCH DESIGN Correlational. STUDY SAMPLE Thirty four adults (aged 22-77 yr) with hearing thresholds falling within normal limits. DATA COLLECTION AND ANALYSIS Stimuli used to evoke FFRs were 1000 Hz tone bursts as well as a consonant-vowel /da/ sound. RESULTS The neural representation of simple (tone) and complex (/da/) stimuli declines with advancing age. Tone-FFR phase coherence decreased as chronological age increased. For the consonant-vowel FFRs, transient onset and offset response amplitudes were smaller, and offset responses were delayed with age. Sustained responses at the onset of vowel periodicity were prolonged in latency and smaller in amplitude as age increased. FFT amplitude of the consonant-vowel FFR fundamental frequency did not significantly decline with increasing age. The ability to encode a simple signal was related to degradation in the neural representation of a complex, speechlike sound. Tone-FFR phase coherence was significantly related to the later vowel response components but not the earlier vowel components. CONCLUSIONS FFR components representing the tone and consonant-vowel /da/ stimulus were negatively affected by age, showing age-related reductions in response synchrony and amplitude, as well as prolonged latencies. These aging effects were evident in middle age, even in the absence of significant hearing loss.


Jaro-journal of The Association for Research in Otolaryngology | 2011

Relationship Between Behavioral and Physiological Spectral-Ripple Discrimination

Jong Ho Won; C. Clinard; Seeyoun Kwon; Vasant K. Dasika; Kaibao Nie; Ward R. Drennan; Kelly L. Tremblay; Jay T. Rubinstein

Previous studies have found a significant correlation between spectral-ripple discrimination and speech and music perception in cochlear implant (CI) users. This relationship could be of use to clinicians and scientists who are interested in using spectral-ripple stimuli in the assessment and habilitation of CI users. However, previous psychoacoustic tasks used to assess spectral discrimination are not suitable for all populations, and it would be beneficial to develop methods that could be used to test all age ranges, including pediatric implant users. Additionally, it is important to understand how ripple stimuli are processed in the central auditory system and how their neural representation contributes to behavioral performance. For this reason, we developed a single-interval, yes/no paradigm that could potentially be used both behaviorally and electrophysiologically to estimate spectral-ripple threshold. In experiment 1, behavioral thresholds obtained using the single-interval method were compared to thresholds obtained using a previously established three-alternative forced-choice method. A significant correlation was found (r = 0.84, p = 0.0002) in 14 adult CI users. The spectral-ripple threshold obtained using the new method also correlated with speech perception in quiet and noise. In experiment 2, the effect of the number of vocoder-processing channels on the behavioral and physiological threshold in normal-hearing listeners was determined. Behavioral thresholds, using the new single-interval method, as well as cortical P1-N1-P2 responses changed as a function of the number of channels. Better behavioral and physiological performance (i.e., better discrimination ability at higher ripple densities) was observed as more channels added. In experiment 3, the relationship between behavioral and physiological data was examined. Amplitudes of the P1-N1-P2 “change” responses were significantly correlated with d′ values from the single-interval behavioral procedure. Results suggest that the single-interval procedure with spectral-ripple phase inversion in ongoing stimuli is a valid approach for measuring behavioral or physiological spectral resolution.


Ear and Hearing | 2011

The effect of age on the vestibular evoked myogenic potential and sternocleidomastoid muscle tonic electromyogram level.

Faith W. Akin; Owen D. Murnane; J. Tampas; C. Clinard

Objective:Cervical vestibular evoked myogenic potentials (cVEMPs) are short-latency electromyogram (EMG) evoked by high-level acoustic stimuli recorded from the activated sternocleidomastoid muscle and used to evaluate otolith organ function. The purpose of this study was to investigate the effects of aging on the cVEMP and on the sternocleidomastoid muscle EMG level. Design:A cross-sectional observational study was used to investigate differences in cVEMP and sternocleidomastoid muscle EMG level in a group of 24 younger and 24 older individuals. cVEMPs were recorded during activation of the sternocleidomastoid muscle at target EMG levels ranging from 0 to 90 &mgr;V and during maximum voluntary contraction of the sternocleidomastoid muscle. Results:The sternocleidomastoid muscle EMG amplitude increased as a function of target EMG level for both age groups; however, the mean EMG amplitude was greater for the younger group than the older group, and the variability of EMG amplitude was greater for the older group. The EMG amplitude at maximum voluntary contraction ranged from 88 to 279 &mgr;V for the younger subjects and from 32 to 230 &mgr;V for the older subjects, and the mean EMG amplitude at maximum voluntary contraction was significantly greater for the younger group than the older group. The cVEMP amplitude increased as a function of EMG target level for each age group. Although cVEMP amplitude increased as a function of target EMG level for both groups, the older group exhibited smaller cVEMP amplitudes, overall, compared with the younger group. To separate the influence of EMG level from aging on cVEMP amplitude, only the responses obtained at the 30 &mgr;V target EMG level were considered for the statistical analysis because there was no significant difference in EMG level between groups at the 30 &mgr;V target level. The mean cVEMP amplitudes at the 30 &mgr;V target level were 101 and 51 &mgr;V for the younger and older groups, respectively, and a statistical analysis indicated that cVEMP amplitude for the younger group was significantly greater than the older group. Conclusions:The findings suggest that the decrement in cVEMP amplitude is related to both age-related changes in the vestibular system and age-related changes in the sternocleidomastoid muscle.


Ear and Hearing | 2012

The effect of noise exposure on the cervical vestibular evoked myogenic potential.

Faith W. Akin; Owen D. Murnane; J. Tampas; C. Clinard; Stephanie M. Byrd; J. Kip Kelly

Objective: The purpose of this study was to investigate the effects of noise exposure on the cervical vestibular evoked myogenic potential (cVEMP) in individuals with asymmetric noise-induced sensorineural hearing loss (NIHL). Design: A cross-sectional observational study was used to compare cVEMP characteristics in 43 individuals with a history of noise exposure greater in one ear (e.g., the left ear of a right-handed rifle shooter) and asymmetric sensorineural hearing loss consistent with the history of noise exposure and in 14 age-matched controls. The characteristics of hearing loss were examined further for the noise-exposed participants with abnormal cVEMPs and the noise-exposed participants with normal cVEMPs. Results: Thirty-three percent of the noise-exposed participants had abnormal cVEMPs, whereas cVEMPs were present and symmetrical in 100% of the age-matched controls, and cVEMP threshold was greater in the noise-exposed group than in the control group. Abnormal cVEMPs occurred most often in the ears with poorer hearing (or greater NIHL), and the noise-exposed participants who had abnormal cVEMPs had poorer high-frequency pure-tone thresholds (greater NIHL) and greater interaural high-frequency pure-tone threshold differences than the noise-exposed participants with normal cVEMPs. Conclusions: These findings are consistent with previous studies that suggest that the sacculocollic pathway may be susceptible to noise-related damage. There is emerging evidence that the severity of NIHL is associated with the presence or absence of cVEMPs.


Hearing Research | 2015

Neural representation of dynamic frequency is degraded in older adults

C. Clinard; Caitlin M. Cotter

Older adults, even with clinically normal hearing sensitivity, often report difficulty understanding speech in the presence of background noise. Part of this difficulty may be related to age-related degradations in the neural representation of speech sounds, such as formant transitions. Frequency-following responses (FFRs), which are dependent on phase-locked neural activity, were elicited using sounds consisting of linear frequency sweeps, which may be viewed as simple models of formant transitions. Eighteen adults (ten younger, 22-24 years old, and nine older, 51-67 years old) were tested. FFRs were elicited by tonal sweeps in six conditions. Two directions of frequency change, rising or falling, were used for each of three rates of frequency change. Stimulus-to-response cross correlations revealed that older adults had significantly poorer representation of the tonal sweeps, and that FFRs became poorer for faster rates of change. An additional FFR signal-to-noise ratio analysis based on time windows revealed that across the FFR waveforms and rates of frequency change, older adults had smaller (poorer) signal-to-noise ratios. These results indicate that older adults, even with clinically-normal hearing sensitivity, have degraded phase-locked neural representations of dynamic frequency.


Journal of the Acoustical Society of America | 2016

The neural encoding of formant frequencies contributing to vowel identification in normal-hearing listeners

Jong Ho Won; Kelly L. Tremblay; C. Clinard; Richard Wright; Elad Sagi; Mario A. Svirsky

Even though speech signals trigger coding in the cochlea to convey speech information to the central auditory structures, little is known about the neural mechanisms involved in such processes. The purpose of this study was to understand the encoding of formant cues and how it relates to vowel recognition in listeners. Neural representations of formants may differ across listeners; however, it was hypothesized that neural patterns could still predict vowel recognition. To test the hypothesis, the frequency-following response (FFR) and vowel recognition were obtained from 38 normal-hearing listeners using four different vowels, allowing direct comparisons between behavioral and neural data in the same individuals. FFR was employed because it provides an objective and physiological measure of neural activity that can reflect formant encoding. A mathematical model was used to describe vowel confusion patterns based on the neural responses to vowel formant cues. The major findings were (1) there were large variations in the accuracy of vowel formant encoding across listeners as indexed by the FFR, (2) these variations were systematically related to vowel recognition performance, and (3) the mathematical model of vowel identification was successful in predicting good vs poor vowel identification performers based exclusively on physiological data.


Hearing Research | 2010

Aging alters the perception and physiological representation of frequency: Evidence from human FFR recordings

C. Clinard; Kelly L. Tremblay; Ananthanarayan Krishnan

Older adults, even with clinically normal hearing sensitivity, have auditory perceptual deficits relative to their younger counterparts. This difficulty may in part, be related to a decline in the neural representation of frequency. The purpose of this study was to examine the effect of age on behavioral and physiological measures of frequency representation. Thirty two adults (ages 22-77), with hearing thresholds 25 dB HL at octave frequencies 0.25-8.0 kHz, participated in this experiment. Frequency discrimination difference limens (FDLs) were obtained at 500 and 1000 Hz using a two-interval, two-alternative forced choice procedure. Linear regression analyses showed significant declines in FDLs at both frequencies as age increased. Frequency-following responses (FFRs) were elicited by 500 and 1000 Hz tonebursts, as well as at frequencies within and outside those FDLs. Linear regression of FFR phase coherence and FFR amplitude at frequencies at and slightly below 1000 Hz showed significant decreases as age increased. Therefore, pitch discrimination, as measured by FDLs, and neural representation of frequency, as reflected by FFR, declined as age increased. Although perception and neural representation concurrently declined, one was not predictive of the other.


Journal of the Acoustical Society of America | 2017

Neural encoding of vowel formant frequency in normal-hearing listeners

Mario A. Svirsky; Jong-Ho Won; C. Clinard; Richard Wright; Elad Sagi; Kelly L. Tremblay

Physiological correlates of speech acoustics are particularly important to study in humans because it is uncertain whether animals process speech the same way humans do. Studying the physiology of speech processing in humans, however, typically requires the use of noninvasive physiological measures. This is what we attempted in a recent study (Won, Tremblay, Clinard, Wright, Sagi, and Svirsky, JASA 2016) which examined the hypothesis that neural representations of formant frequencies may help predict vowel recognition. To test the hypothesis, the frequency-following response (FFR) and vowel recognition were obtained from 38 normal-hearing listeners using four different vowels. This allowed direct comparisons between behavioral and neural data in the same individuals. FFR was used because it reflects temporal encoding of formant frequencies below about 1500 Hz. Four synthetic vowels with formant frequencies below 1500 Hz were used. Duration was 70 ms for all vowels to eliminate temporal cues and to make id...


Hearing Research | 2010

Aging alters the perception and physiological representation of frequency

C. Clinard; Kelly L. Tremblay; Ananthanarayan Krishnan

Older adults, even with clinically normal hearing sensitivity, have auditory perceptual deficits relative to their younger counterparts. This difficulty may in part, be related to a decline in the neural representation of frequency. The purpose of this study was to examine the effect of age on behavioral and physiological measures of frequency representation. Thirty two adults (ages 22-77), with hearing thresholds 25 dB HL at octave frequencies 0.25-8.0 kHz, participated in this experiment. Frequency discrimination difference limens (FDLs) were obtained at 500 and 1000 Hz using a two-interval, two-alternative forced choice procedure. Linear regression analyses showed significant declines in FDLs at both frequencies as age increased. Frequency-following responses (FFRs) were elicited by 500 and 1000 Hz tonebursts, as well as at frequencies within and outside those FDLs. Linear regression of FFR phase coherence and FFR amplitude at frequencies at and slightly below 1000 Hz showed significant decreases as age increased. Therefore, pitch discrimination, as measured by FDLs, and neural representation of frequency, as reflected by FFR, declined as age increased. Although perception and neural representation concurrently declined, one was not predictive of the other.

Collaboration


Dive into the C. Clinard's collaboration.

Top Co-Authors

Avatar

Faith W. Akin

United States Department of Veterans Affairs

View shared research outputs
Top Co-Authors

Avatar

Owen D. Murnane

United States Department of Veterans Affairs

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jong Ho Won

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard Wright

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge