Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jong-In Park is active.

Publication


Featured researches published by Jong-In Park.


Cancer Research | 2006

Cyclin-Dependent Kinase 5 Activity Controls Cell Motility and Metastatic Potential of Prostate Cancer Cells

Christopher J. Strock; Jong-In Park; Eric K. Nakakura; G. Steven Bova; John T. Isaacs; Douglas W. Ball; Barry D. Nelkin

We show here that cyclin-dependent kinase 5 (CDK5), a known regulator of migration in neuronal development, plays an important role in prostate cancer motility and metastasis. P35, an activator of CDK5 that is indicative of its activity, is expressed in a panel of human and rat prostate cancer cell lines, and is also expressed in 87.5% of the human metastatic prostate cancers we examined. Blocking of CDK5 activity with a dominant-negative CDK5 construct, small interfering RNA, or roscovitine resulted in changes in the microtubule cytoskeleton, loss of cellular polarity, and loss of motility. Expression of a dominant-negative CDK5 in the highly metastatic Dunning AT6.3 prostate cancer cell line also greatly impaired invasive capacity. CDK5 activity was important for spontaneous metastasis in vivo; xenografts of AT6.3 cells expressing dominant-negative CDK5 had less than one-fourth the number of lung metastases exhibited by AT6.3 cells expressing the empty vector. These results show that CDK5 activity controls cell motility and metastatic potential in prostate cancer.


Molecular and Cellular Biology | 2003

The Ras/Raf/MEK/Extracellular Signal-Regulated Kinase Pathway Induces Autocrine-Paracrine Growth Inhibition via the Leukemia Inhibitory Factor/JAK/STAT Pathway

Jong-In Park; Christopher J. Strock; Douglas W. Ball; Barry D. Nelkin

ABSTRACT Sustained activation of the Ras/Raf/MEK/extracellular signal-regulated kinase (ERK) pathway can lead to cell cycle arrest in many cell types. We have found, with human medullary thyroid cancer (MTC) cells, that activated Ras or c-Raf-1 can induce growth arrest by producing and secreting an autocrine-paracrine factor. This protein was purified from cell culture medium conditioned by Raf-activated MTC cells and was identified by mass spectrometry as leukemia inhibitory factor (LIF). LIF expression upon Raf activation and subsequent activation of JAK-STAT3 was also observed in small cell lung carcinoma cells, suggesting that this autocrine-paracrine signaling may be a common response to Ras/Raf activation. LIF was sufficient to induce growth arrest and differentiation of MTC cells. This effect was mediated through the gp130/JAK/STAT3 pathway, since anti-gp130 blocking antibody or dominant-negative STAT3 blocked the effects of LIF. Thus, LIF expression provides a novel mechanism allowing Ras/Raf signaling to activate the JAK-STAT3 pathway. In addition to this cell-extrinsic growth inhibitory pathway, we find that the Ras/Raf/MEK/ERK pathway induces an intracellular growth inhibitory signal, independent of the LIF/JAK/STAT3 pathway. Therefore, activation of the Ras/Raf/MEK/ERK pathway can lead to growth arrest and differentiation via at least two different signaling pathways. This use of multiple pathways may be important for “fail-safe” induction and maintenance of cell cycle arrest.


Journal of Biological Chemistry | 1998

The cytoplasmic Cu,Zn superoxide dismutase of saccharomyces cerevisiae is required for resistance to freeze-thaw stress. Generation of free radicals during freezing and thawing.

Jong-In Park; Chris M. Grant; Michael J. Davies; Ian W. Dawes

The involvement of oxidative stress in freeze-thaw injury to yeast cells was analyzed using mutants defective in a range of antioxidant functions, including Cu,Zn superoxide dismutase (encoded by SOD1), Mn superoxide dismutase (SOD2), catalase A, catalase T, glutathione reductase, γ-glutamylcysteine synthetase and Yap1 transcription factor. Only those affecting superoxide dismutases showed decreased freeze-thaw tolerance, with the sod1 mutant and the sod1 sod2 double mutant being most affected. This indicated that superoxide anions were formed during freezing and thawing. This was confirmed since the sod1 mutant could be made more resistant by treatment with the superoxide anion scavenger MnCl2, or by freezing in the absence of oxygen, or by the generation of a rho0 petite. Increased expression ofSOD2 conferred freeze-thaw tolerance on thesod1 mutant indicating the ability of the mitochondrial superoxide dismutase to compensate for the lack of the cytoplasmic enzyme. Free radicals generated as a result of freezing and thawing were detected in cells directly using electron paramagnetic resonance spectroscopy with eitherα-phenyl-N-tert-butylnitrone or 5,5-dimethyl-1-pyrroline-N-oxide as spin trap. Highest levels were formed in the sod1 and sod1 sod2 mutant strains, but lower levels were detected in the wild type. The results show that oxidative stress causes major injury to cells during aerobic freezing and thawing and that this is mainly initiated in the cytoplasm by an oxidative burst of superoxide radicals formed from oxygen and electrons leaked from the mitochondrial electron transport chain.


Journal of Biological Chemistry | 2009

Oxidative Stress Inhibits Insulin-like Growth Factor-I Induction of Chondrocyte Proteoglycan Synthesis through Differential Regulation of Phosphatidylinositol 3-Kinase-Akt and MEK-ERK MAPK Signaling Pathways

Weihong Yin; Jong-In Park; Richard F. Loeser

The ability of insulin-like growth factor I (IGF-I) to stimulate cartilage matrix synthesis is reduced in aged and osteoarthritic cartilage. Aging and osteoarthritis are associated with an increase in reactive oxygen species, which we hypothesized would interfere with normal IGF-I signaling. We compared IGF-I signaling in normal and osteoarthritic human articular chondrocytes and investigated the effects of oxidative stress induced by tert-butylhydroperoxide (tBHP). In normal human chondrocytes, IGF-I initiated a strong and sustained phosphorylation of IRS-1 (Tyr-612) and Akt (Ser-473) and transient ERK phosphorylation. In contrast, in osteoarthritic chondrocytes, which possessed elevated basal IRS-1 (Ser-312) and ERK phosphorylation, IGF-I failed to stimulate IRS-1 (Tyr-612) or Akt phosphorylation. In normal human chondrocytes, tBHP triggered strong IRS-1 (Ser-312 and Ser-616) and ERK phosphorylation and inhibited IGF-I-induced IRS-1 (Tyr-612) and Akt phosphorylation. Lentivirus-mediated overexpression of constitutively active (CA) Akt significantly enhanced proteoglycan synthesis, whereas both dominant negative Akt and CA MEK inhibited proteoglycan synthesis. CA Akt also promoted type II collagen and Sox9 expression, whereas tBHP treatment and CA MEK inhibited aggrecan, collagen II, and Sox9 mRNA expression. In osteoarthritic chondrocytes, the antioxidants Mn(III) tetrakis(4-benzoic acid)porphyrin and N-acetylcysteine increased the ratio of Akt to ERK phosphorylation and promoted IGF-I-mediated proteoglycan synthesis. Chemical inhibition of ERK significantly enhanced IGF-I phosphorylation of Akt and alleviated tBHP inhibition of Akt phosphorylation. These results demonstrate opposing roles for phosphatidylinositol 3-kinase-Akt and MEK-ERK in cartilage matrix synthesis and suggest that elevated levels of reactive oxygen species cause chondrocyte IGF-I resistance by altering the balance of Akt to ERK activity.


Journal of Biological Chemistry | 2009

Noncatalytic Function of ERK1/2 Can Promote Raf/MEK/ERK-mediated Growth Arrest Signaling

Seung-Keun Hong; Seunghee Yoon; Cas Moelling; Dumrongkiet Arthan; Jong-In Park

Kinase activity is known as the key biochemical property of MAPKs. Here, we report that ERK1/2 also utilizes its noncatalytic function to mediate certain signal transductions. Sustained activation of the Raf/MEK/ERK pathway induces growth arrest, accompanied by changes in cell cycle regulators (decreased retinoblastoma phosphorylation, E2F1 down-regulation, and/or p21CIP1 up-regulation) and cell type-specific changes in morphology and expression of c-Myc or RET in the human tumor lines LNCaP, U251, and TT. Ablation of ERK1/2 by RNA interference abrogated all these effects. However, active site-disabled ERK mutants (ERK1-K71R, ERK2-K52R, and ERK2-D147A), which competitively inhibit activation of endogenous ERK1/2, could not block Raf/MEK-induced growth arrest as well as changes in the cell cycle regulators, although they effectively blocked phosphorylation of the ERK1/2 catalytic activity readouts, p90RSK and ELK1, as well as the cell type-specific changes. Because this indicated a potential noncatalytic ERK1/2 function, we generated stable lines of the tumor cells in which both ERK1 and ERK2 were significantly knocked down, and we further investigated the possibility using rat-derived kinase-deficient ERK mutants (ERK2-K52R and ERK2-T183A/Y185F) that were not targeted by human small hairpin RNA. Indeed, ERK2-K52R selectively restored Raf-induced growth inhibitory signaling in ERK1/2-depleted cells, as manifested by regained cellular ability to undergo growth arrest and to control the cell cycle regulators without affecting c-Myc and morphology. However, ERK2-T183A/Y185F was less effective, indicating the requirement of TEY site phosphorylation. Our study suggests that functions of ERK1/2 other than its “canonical” kinase activity are also involved in the pathway-mediated growth arrest signaling.


American Journal of Pathology | 2004

Regulation and Function of Trefoil Factor Family 3 Expression in the Biliary Tree

Isao Nozaki; John G. Lunz; Susan Specht; Jong-In Park; Andrew S. Giraud; Noriko Murase; Anthony J. Demetris

Microarray analysis identified trefoil factor family 3 (TFF3) as a gene expressed in biliary epithelial cells (BECs), regulated by interleukin (IL)-6, and potentially involved in biliary pathophysiology. We therefore studied the regulation and function of BEC TFF3, in vitro and in vivo in IL-6(+/+) and IL-6(-/-) mice subjected to chronic bile duct ligation for 12 weeks. In vitro studies showed that IL-6 wild-type (IL-6(+/+)) BECs expressed higher TFF3 mRNA and protein levels than IL-6-deficient (IL-6(-/-)) BECs. BEC TFF3 expression is dependent primarily on signal transducer and activator of transcription (STAT3) signaling, but the reciprocal negative regulation known to exist between the intracellular IL-6/gp130 signaling pathways, STAT3 and mitogen-activated protein kinase (MAPK), importantly contributes to BEC TFF3 expression. Specifically blocking STAT3 activity with a dominant-negative molecule or treatment with a growth factor such as hepatocyte growth factor, which increases MAPK signaling, decreases BEC TFF3 expression. In contrast, specifically blocking MAPK activity with PD98059 significantly increased BEC TFF3 expression. Higher BEC TFF3 levels in IL-6(+/+) BECs were associated with significantly better migration than IL-6(-/-) BECs in a wound-healing assay and defective IL-6(-/-) BEC migration was reversed with exogenous TFF3. In vivo, hepatic TFF3 mRNA and protein expression was limited to BECs and dependent significantly on STAT3 signaling, but was influenced by other factors present after bile duct ligation. Comparable results were obtained in normal and diseased human tissue samples. In conclusion the regulation and function of BEC TFF3 expression is similar to the colon. BEC TFF3 expression depends primarily on gp130/STAT3 and contributes to BEC migration and wound healing. Therefore, use of recombinant IL-6 or TFF3 peptides should exert a therapeutic role in preventing biliary strictures in liver allografts.


Experimental Cell Research | 2014

Raf/MEK/ERK can regulate cellular levels of LC3B and SQSTM1/p62 at expression levels.

Jin-Hwan Kim; Seung-Keun Hong; Pui-Kei Wu; Alexsia L. Richards; William T. Jackson; Jong-In Park

While cellular LC3B and SQSTM1 levels serve as key autophagy markers, their regulation by different signaling pathways requires better understanding. Here, we report the mechanisms by which the Raf/MEK/ERK pathway regulates cellular LC3B and SQSTM1 levels. In different cell types, ΔRaf-1:ER- or B-Raf(V600E)-mediated MEK/ERK activation increased LC3B-I, LC3B-II, and SQSTM1/p62 levels, which was accompanied by increased BiP/GRP78 expression. Use of the autophagy inhibitors chloroquine and bafilomycin A1, or RNA interference of ATG7, suggested that these increases in LC3B and SQSTM1 levels were in part attributed to altered autophagic flux. However, intriguingly, these increases were also attributed to their increased expression. Upon Raf/MEK/ERK activation, mRNA levels of LC3B and SQSTM1 were also increased, and subsequent luciferase reporter analyses suggested that SQSTM1 upregulation was mediated at transcription level. Under this condition, transcription of BiP/GRP78 was also increased, which was necessary for Raf/MEK/ERK to regulate LC3B at the protein, but not mRNA, level. This suggests that BiP has a role in regulating autophagy machinery when Raf/MEK/ERK is activated. In conclusion, these results suggest that, under a Raf/MEK/ERK-activated condition, the steady-state cellular levels of LC3B and SQSTM1 can also be determined by their altered expression wherein BiP is utilized as an effector of the signaling.


Experimental Cell Research | 2011

The Raf/MEK/extracellular signal-regulated kinase 1/2 pathway can mediate growth inhibitory and differentiation signaling via androgen receptor downregulation in prostate cancer cells

Seung–Keun Hong; Jin Hwan Kim; Ming Fong Lin; Jong-In Park

Upregulated ERK1/2 activity is correlated with androgen receptor (AR) downregulation in certain prostate cancer (PCa) that exhibits androgen deprivation-induced neuroendocrine differentiation, but its functional relevance requires elucidation. We found that sustained ERK1/2 activation using active Raf or MEK1/2 mutants is sufficient to induce AR downregulation at mRNA and protein levels in LNCaP. Downregulation of AR protein, but not mRNA, was blocked by proteasome inhibitors, MG132 and bortezomib, indicating that the pathway regulation is mediated at multiple points. Ectopic expression of a constitutively active AR inhibited Raf/MEK/ERK-mediated regulation of the differentiation markers, neuron-specific enolase and neutral endopeptidase, and the cyclin-dependent kinase inhibitors, p16(INK4A) and p21(CIP1), but not Rb phosphorylation and E2F1 expression, indicating that AR has a specific role in the pathway-mediated differentiation and growth inhibitory signaling. However, despite the sufficient role of Raf/MEK/ERK, its inhibition using U0126 or ERK1/2 knockdown could not block androgen deprivation-induced AR downregulation in an LNCaP neuroendocrine differentiation model, suggesting that additional signaling pathways are involved in the regulation. We additionally report that sustained Raf/MEK/ERK activity can downregulate full length as well as hormone binding domain-deficient AR isoforms in androgen-refractory C4-2 and CWR22Rv1, but not in LAPC4 and MDA-PCa-2b. Our study demonstrates a novel role of the Raf/MEK/ERK pathway in regulating AR expression in certain PCa types and provides an insight into PCa responses to its aberrant activation.


Cancer Letters | 2010

Leukemia inhibitory factor can mediate Ras/Raf/MEK/ERK-induced growth inhibitory signaling in medullary thyroid cancer cells

Dumrongkiet Arthan; Seung-Keun Hong; Jong-In Park

Medullary thyroid carcinoma (MTC) is a multiple endocrine neoplasia type 2 syndrome caused by mutations in extracellular receptor or intracellular kinase domains of the RET proto-oncogene. Activation of the Ras/Raf/MEK/ERK pathway can lead to growth arrest by secreting leukemia inhibitory factor (LIF) in MTC cells harboring a RET receptor domain mutation. Here, we report that Ras/Raf/MEK/ERK can also mediate, via LIF, growth inhibition in MTC cells harboring a RET kinase domain mutation. Ras/Raf/MEK/ERK activation was sufficient to induce growth inhibition and LIF expression in the human MTC line MZ-CRC-1. Presence of LIF-mediated signaling was determined by blocking the activity of culture medium conditioned by Raf-activated cells using anti-LIF neutralizing antibody. In addition, recombinant LIF effectively suppressed cell proliferation via cell cycle arrest in G0/G1 phase. Expression of dominant negative STAT3 abrogated LIF effects, indicating that LIF mediates its signaling through the JAK/STAT3 pathway. These results suggest that growth inhibition and activation of the autocrine/paracrine signaling through LIF/JAK/STAT may be a common response to Ras/Raf activation in different MTC types, and justify further evaluation of LIF as a potential anticancer agent for MTC.


Molecular and Cellular Biology | 2013

A Mortalin/HSPA9-Mediated Switch in Tumor-Suppressive Signaling of Raf/MEK/Extracellular Signal-Regulated Kinase

Pui-Kei Wu; Seung-Keun Hong; Sudhakar Veeranki; Mansi Karkhanis; Dmytro Starenki; Jose A. Plaza; Jong-In Park

ABSTRACT Dysregulated Raf/MEK/extracellular signal-regulated kinase (ERK) signaling, a common hallmark of tumorigenesis, can trigger innate tumor-suppressive mechanisms, which must be inactivated for carcinogenesis to occur. This innate tumor-suppressive signaling may provide a potential therapeutic target. Here we report that mortalin (HSPA9/GRP75/PBP74) is a novel negative regulator of Raf/MEK/ERK and may provide a target for the reactivation of tumor-suppressive signaling of the pathway in cancer. We found that mortalin is present in the MEK1/MEK2 proteome and is upregulated in human melanoma biopsy specimens. In different MEK/ERK-activated cancer cell lines, mortalin depletion induced cell death and growth arrest, which was accompanied by increased p21CIP1 transcription and MEK/ERK activity. Remarkably, MEK/ERK activity was necessary for mortalin depletion to induce p21CIP1 expression in B-RafV600E-transformed cancer cells regardless of their p53 status. In contrast, in cell types exhibiting normal MEK/ERK status, mortalin overexpression suppressed B-RafV600E- or ΔRaf-1:ER-induced MEK/ERK activation, p21CIP1 expression, and cell cycle arrest. Other HSP70 family chaperones could not effectively replace mortalin for p21CIP1 regulation, suggesting a unique role for mortalin. These findings reveal a novel mechanism underlying p21CIP1 regulation in MEK/ERK-activated cancer and identify mortalin as a molecular switch that mediates the tumor-suppressive versus oncogenic result of dysregulated Raf/MEK/ERK signaling. Our study also demonstrates that p21CIP1 has dual effects under mortalin-depleted conditions, i.e., mediating cell cycle arrest while limiting cell death.

Collaboration


Dive into the Jong-In Park's collaboration.

Top Co-Authors

Avatar

Seung-Keun Hong

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Dmytro Starenki

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Pui-Kei Wu

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mansi Karkhanis

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Chris M. Grant

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Ian W. Dawes

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Andrew M. Chan

The Chinese University of Hong Kong

View shared research outputs
Researchain Logo
Decentralizing Knowledge