Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seung-Keun Hong is active.

Publication


Featured researches published by Seung-Keun Hong.


Journal of Biological Chemistry | 2009

Noncatalytic Function of ERK1/2 Can Promote Raf/MEK/ERK-mediated Growth Arrest Signaling

Seung-Keun Hong; Seunghee Yoon; Cas Moelling; Dumrongkiet Arthan; Jong-In Park

Kinase activity is known as the key biochemical property of MAPKs. Here, we report that ERK1/2 also utilizes its noncatalytic function to mediate certain signal transductions. Sustained activation of the Raf/MEK/ERK pathway induces growth arrest, accompanied by changes in cell cycle regulators (decreased retinoblastoma phosphorylation, E2F1 down-regulation, and/or p21CIP1 up-regulation) and cell type-specific changes in morphology and expression of c-Myc or RET in the human tumor lines LNCaP, U251, and TT. Ablation of ERK1/2 by RNA interference abrogated all these effects. However, active site-disabled ERK mutants (ERK1-K71R, ERK2-K52R, and ERK2-D147A), which competitively inhibit activation of endogenous ERK1/2, could not block Raf/MEK-induced growth arrest as well as changes in the cell cycle regulators, although they effectively blocked phosphorylation of the ERK1/2 catalytic activity readouts, p90RSK and ELK1, as well as the cell type-specific changes. Because this indicated a potential noncatalytic ERK1/2 function, we generated stable lines of the tumor cells in which both ERK1 and ERK2 were significantly knocked down, and we further investigated the possibility using rat-derived kinase-deficient ERK mutants (ERK2-K52R and ERK2-T183A/Y185F) that were not targeted by human small hairpin RNA. Indeed, ERK2-K52R selectively restored Raf-induced growth inhibitory signaling in ERK1/2-depleted cells, as manifested by regained cellular ability to undergo growth arrest and to control the cell cycle regulators without affecting c-Myc and morphology. However, ERK2-T183A/Y185F was less effective, indicating the requirement of TEY site phosphorylation. Our study suggests that functions of ERK1/2 other than its “canonical” kinase activity are also involved in the pathway-mediated growth arrest signaling.


Experimental Cell Research | 2014

Raf/MEK/ERK can regulate cellular levels of LC3B and SQSTM1/p62 at expression levels.

Jin-Hwan Kim; Seung-Keun Hong; Pui-Kei Wu; Alexsia L. Richards; William T. Jackson; Jong-In Park

While cellular LC3B and SQSTM1 levels serve as key autophagy markers, their regulation by different signaling pathways requires better understanding. Here, we report the mechanisms by which the Raf/MEK/ERK pathway regulates cellular LC3B and SQSTM1 levels. In different cell types, ΔRaf-1:ER- or B-Raf(V600E)-mediated MEK/ERK activation increased LC3B-I, LC3B-II, and SQSTM1/p62 levels, which was accompanied by increased BiP/GRP78 expression. Use of the autophagy inhibitors chloroquine and bafilomycin A1, or RNA interference of ATG7, suggested that these increases in LC3B and SQSTM1 levels were in part attributed to altered autophagic flux. However, intriguingly, these increases were also attributed to their increased expression. Upon Raf/MEK/ERK activation, mRNA levels of LC3B and SQSTM1 were also increased, and subsequent luciferase reporter analyses suggested that SQSTM1 upregulation was mediated at transcription level. Under this condition, transcription of BiP/GRP78 was also increased, which was necessary for Raf/MEK/ERK to regulate LC3B at the protein, but not mRNA, level. This suggests that BiP has a role in regulating autophagy machinery when Raf/MEK/ERK is activated. In conclusion, these results suggest that, under a Raf/MEK/ERK-activated condition, the steady-state cellular levels of LC3B and SQSTM1 can also be determined by their altered expression wherein BiP is utilized as an effector of the signaling.


Cancer Letters | 2010

Leukemia inhibitory factor can mediate Ras/Raf/MEK/ERK-induced growth inhibitory signaling in medullary thyroid cancer cells

Dumrongkiet Arthan; Seung-Keun Hong; Jong-In Park

Medullary thyroid carcinoma (MTC) is a multiple endocrine neoplasia type 2 syndrome caused by mutations in extracellular receptor or intracellular kinase domains of the RET proto-oncogene. Activation of the Ras/Raf/MEK/ERK pathway can lead to growth arrest by secreting leukemia inhibitory factor (LIF) in MTC cells harboring a RET receptor domain mutation. Here, we report that Ras/Raf/MEK/ERK can also mediate, via LIF, growth inhibition in MTC cells harboring a RET kinase domain mutation. Ras/Raf/MEK/ERK activation was sufficient to induce growth inhibition and LIF expression in the human MTC line MZ-CRC-1. Presence of LIF-mediated signaling was determined by blocking the activity of culture medium conditioned by Raf-activated cells using anti-LIF neutralizing antibody. In addition, recombinant LIF effectively suppressed cell proliferation via cell cycle arrest in G0/G1 phase. Expression of dominant negative STAT3 abrogated LIF effects, indicating that LIF mediates its signaling through the JAK/STAT3 pathway. These results suggest that growth inhibition and activation of the autocrine/paracrine signaling through LIF/JAK/STAT may be a common response to Ras/Raf activation in different MTC types, and justify further evaluation of LIF as a potential anticancer agent for MTC.


Molecular and Cellular Biology | 2013

A Mortalin/HSPA9-Mediated Switch in Tumor-Suppressive Signaling of Raf/MEK/Extracellular Signal-Regulated Kinase

Pui-Kei Wu; Seung-Keun Hong; Sudhakar Veeranki; Mansi Karkhanis; Dmytro Starenki; Jose A. Plaza; Jong-In Park

ABSTRACT Dysregulated Raf/MEK/extracellular signal-regulated kinase (ERK) signaling, a common hallmark of tumorigenesis, can trigger innate tumor-suppressive mechanisms, which must be inactivated for carcinogenesis to occur. This innate tumor-suppressive signaling may provide a potential therapeutic target. Here we report that mortalin (HSPA9/GRP75/PBP74) is a novel negative regulator of Raf/MEK/ERK and may provide a target for the reactivation of tumor-suppressive signaling of the pathway in cancer. We found that mortalin is present in the MEK1/MEK2 proteome and is upregulated in human melanoma biopsy specimens. In different MEK/ERK-activated cancer cell lines, mortalin depletion induced cell death and growth arrest, which was accompanied by increased p21CIP1 transcription and MEK/ERK activity. Remarkably, MEK/ERK activity was necessary for mortalin depletion to induce p21CIP1 expression in B-RafV600E-transformed cancer cells regardless of their p53 status. In contrast, in cell types exhibiting normal MEK/ERK status, mortalin overexpression suppressed B-RafV600E- or ΔRaf-1:ER-induced MEK/ERK activation, p21CIP1 expression, and cell cycle arrest. Other HSP70 family chaperones could not effectively replace mortalin for p21CIP1 regulation, suggesting a unique role for mortalin. These findings reveal a novel mechanism underlying p21CIP1 regulation in MEK/ERK-activated cancer and identify mortalin as a molecular switch that mediates the tumor-suppressive versus oncogenic result of dysregulated Raf/MEK/ERK signaling. Our study also demonstrates that p21CIP1 has dual effects under mortalin-depleted conditions, i.e., mediating cell cycle arrest while limiting cell death.


Oncogene | 2015

Mortalin (GRP75/HSPA9) upregulation promotes survival and proliferation of medullary thyroid carcinoma cells

Dmytro Starenki; Seung-Keun Hong; Ricardo V. Lloyd; Jong-In Park

Medullary thyroid carcinoma (MTC) is a neuroendocrine tumor mainly caused by mutations in the rearranged during transfection (RET) proto-oncogene. For therapy of advanced MTC, the Food and Drug Administration recently approved vandetanib and cabozantinib, the tyrosine kinase inhibitors targeting RET, vascular endothelial growth factor receptor, epidermal growth factor receptor and/or c-MET. Nevertheless, not all patients respond to these drugs, demanding additional therapeutic strategies. We found that mortalin (HSPA9/GRP75), a member of HSP70 family, is upregulated in human MTC tissues and that its depletion robustly induces cell death and growth arrest in MTC cell lines in culture and in mouse xenografts. These effects were accompanied by substantial downregulation of RET, induction of the tumor-suppressor TP53 and altered expression of cell cycle regulatory machinery and apoptosis markers, including E2F-1, p21CIP1, p27KIP1 and Bcl-2 family proteins. Our investigation of the molecular mechanisms underlying these effects revealed that mortalin depletion induces transient MEK/ERK (extracellular signal–regulated kinase) activation and altered mitochondrial bioenergetics in MTC cells, as indicated by depolarized mitochondrial membrane, decreased oxygen consumption and extracellular acidification and increased oxidative stress. Intriguingly, mortalin depletion induced growth arrest partly via the MEK/ERK pathway, whereas it induced cell death by causing mitochondrial dysfunction in a Bcl-2-dependent manner. However, TP53 was not necessary for these effects except for p21CIP1 induction. Moreover, mortalin depletion downregulated RET expression independently of MEK/ERK and TP53. These data demonstrate that mortalin is a key regulator of multiple signaling and metabolic pathways pivotal to MTC cell survival and proliferation, proposing mortalin as a novel therapeutic target for MTC.


Journal of Biological Chemistry | 2002

Msn2p/Msn4p Act as a Key Transcriptional Activator of Yeast Cytoplasmic Thiol Peroxidase II

Seung-Keun Hong; Mee-Kyung Cha; Yong-Soo Choi; Won-Cheol Kim; Il-Han Kim

We observed that the transcription ofSaccharomyces cerevisiae cytoplasmic thiol peroxidase type II (cTPx II) (YDR453C) is regulated in response to various stresses (e.g. oxidative stress, carbon starvation, and heat-shock). It has been suggested that both transcription-activating proteins, Yap1p and Skn7p, regulate the transcription of cTPx II upon exposure to oxidative stress. However, a dramatic loss of transcriptional response to various stresses in yeast mutant strains lacking both Msn2p and Msn4p suggests that the transcription factors act as a principal transcriptional activator. In addition to two Yap1p response elements (YREs), TTACTAA and TTAGTAA, the presence of two stress response elements (STREs) (CCCCT) in the upstream sequence of cTPx II also suggests that Msn2p/Msn4p could control stress-induced expression of cTPx II. Analysis of the transcriptional activity of site-directed mutagenesis of the putative STREs (STRE1 and STRE2) and YREs (TRE1 and YRE2) in terms of the activity of a lacZ reporter gene under control of the cTPx II promoter indicates that STRE2 acts as a principal binding element essential for transactivation of the cTPx II promoter. The transcriptional activity of thecTPx II promoter was exponentially increased after postdiauxic growth. The transcriptional activity of the cTPx II promoter is greatly increased by rapamycin. Deletion ofTor1, Tor2, Ras1, andRas2 resulted in a considerable induction when compared with their parent strains, suggesting that the transcription ofcTPx II is under negative control of the Ras/cAMP and target of rapamycin signaling pathways. Taken together, these results suggest that cTPx II is a target of Msn2p/Msn4p transcription factors under negative control of the Ras-protein kinase A and target of rapamycin signaling pathways. Furthermore, the accumulation of cTPx II upon exposure to oxidative stress and during the postdiauxic shift suggests an important antioxidant role in stationary phase yeast cells.


Experimental Cell Research | 2013

AKT upregulates B-Raf Ser445 phosphorylation and ERK1/2 activation in prostate cancer cells in response to androgen depletion

Seung-Keun Hong; Joseph H. Jeong; Andrew M. Chan; Jong-In Park

Upregulated ERK1/2 activity is often correlated with AKT activation during prostate cancer (PCa) progression, yet their functional relation needs elucidation. Using androgen-deprived LNCaP cells, in which ERK1/2 activation occurs in strong correlation with AKT activation, we found that AKT-mediated B-Raf regulation is necessary for ERK1/2 activation. Specifically, in response to androgen deprivation, AKT upregulated B-Raf phosphorylation at Ser445 without affecting A-Raf or C-Raf-1. This effect of AKT was abolished by Arg25 to Ala mutation or truncating (∆4-129) the pleckstrin homology domain of AKT, indicating that the canonical AKT regulation is important for this signaling. Intriguingly, although a constitutively active AKT containing N-terminal myristoylation signal could sufficiently upregulate B-Raf phosphorylation at Ser445 in LNCaP cells, subsequent MEK/ERK activation still required hormone deprivation. In contrast, AKT activity was sufficient to induce not only B-Raf phosphorylation but also MEK/ERK activation in the hormone refractory LNCaP variant, C4-2. These data indicate that androgen depletion may induce MEK/ERK activation through a synergy between AKT-dependent and -independent mechanisms and that the latter may become deregulated in association with castration resistance. In support, consistent AKT-mediated B-Raf regulation was also detected in a panel of PCa lines derived from the cPten(-/-)L mice before and after castration. Our results also demonstrate that AKT regulates androgen receptor levels partly via the Raf/MEK/ERK pathway. This study reveals a novel crosstalk between ERK1/2 and AKT in PCa cells.


Archives of Biochemistry and Biophysics | 2008

A glutaredoxin-fused thiol peroxidase acts as an important player in hydrogen peroxide detoxification in late-phased growth of Anabaena sp. PCC7120.

Seung-Keun Hong; Mee-Kyung Cha; Il-Han Kim

The Anabaena sp. genome contains an open reading frame with homology to a novel hybrid form of thiol peroxidase, fused with a glutaredoxin domain. The gene was expressed in Escherichia coli. The purified hybrid protein exerted the highest peroxidase activity toward H2O2 using an electron from a reduced form of glutathione. The calculated kcat and kcat/K(m) values for H2O2 are 48.2 s(-1) and 3.29 x 10(6) M(-1) s(-1), respectively. Immunoblot analyses of the heterocystic proteins showed that the level of the protein in the heterocyst is comparable to that in the vegetative cell. All oxidants tested significantly elevated the mRNA and protein levels. The transcript slightly increased during the exponential growth phase, following which it increased steeply. Also, the levels of transcript were significantly increased in response to N2 starvation, carbon starvation, and light elimination. Taken together, the present data reveal for the first time that the glutathione-dependent thiol peroxidase is an adaptive strategy in Anabaena sp. that efficiently combats H2O2 that are produced during later phase of vegetative and heterocystic growth.


International Journal of Oncology | 2013

Autophagy sensitivity of neuroendocrine lung tumor cells

Seung-Keun Hong; Jin-Hwan Kim; Dmytro Starenki; Jong-In Park

Neuroendocrine (NE) phenotypes characterize a spectrum of lung tumors, including low-grade typical and intermediate-grade atypical carcinoid, high-grade large-cell NE carcinoma and small cell lung carcinoma. Currently, no effective treatments are available to cure NE lung tumors, demanding identification of biological features specific to these tumors. Here, we report that autophagy has an important role for NE lung tumor cell proliferation and survival. We found that the expression levels of the autophagy marker LC3 are relatively high in a panel of lung tumor cell lines expressing high levels of neuron-specific enolase (NSE), a key NE marker in lung tumors. In response to bafilomycin A1 and chloroquine, NE lung tumor cells exhibited cytotoxicity whereas non-NE lung tumor cells exhibited cytostasis, indicating a distinct role of autophagy for NE lung tumor cell survival. Intriguingly, in certain NE lung tumor cell lines, the levels of processed LC3 (LC3-II) were inversely correlated with AKT activity. When AKT activity was inhibited using AKTi or MK2206, the levels of LC3-II and SQSTM1/p62 were increased. In contrast, torin 1, rapamycin or mTOR knockdown increased p62 levels, suggesting that these two pathways have opposing effects on autophagy in certain NE lung tumors. Moreover, inhibition of one pathway resulted in reduced activity of the other, suggesting that these two pathways crosstalk in the tumors. These results suggest that NE lung tumor cells share a common feature of autophagy and are more sensitive to autophagy inhibition than non-NE lung tumor cells.


Cancer Biology & Therapy | 2017

Suppression of B-RafV600E melanoma cell survival by targeting mitochondria using triphenyl-phosphonium-conjugated nitroxide or ubiquinone

Seung-Keun Hong; Dmytro Starenki; Pui-Kei Wu; Jong-In Park

ABSTRACT Most BRAF-mutated melanomas initially responsive to the FDA-approved inhibitors preferentially targeting B-Raf mutated in Val600 residue eventually relapse, requiring additional therapeutic modalities. Recent studies report the significance of metabolic reprograming in mitochondria for maintenance of BRAF-mutated melanomas and for development of their drug resistance to B-Raf inhibitors, providing a rationale for targeting mitochondria as a potential therapeutic strategy for melanoma. We therefore determined whether mitochondria-targeted metabolism-interfering agents can effectively suppress human B-RafV600E melanoma cell lines and their dabrafenib/PLX4032-resistant progenies using mitochondria-targeted carboxy-proxyl (Mito-CP) and ubiquinone (Mito-Q). These agents exhibited comparable efficacy to PLX4032 in suppressing SK-MEL28, A375, and RPMI-7951 cells in vitro. As determined in SK-MEL28 and A375 cells, Mito-CP induced apoptotic cell death mediated by mitochondrial membrane depolarization and subsequent oxidative stress, which PLX4032 could not induce. Of note, Mito-CP also effectively suppressed PLX4032-resistant progenies of SK-MEL28 and A375. Moreover, when orally administered, Mito-CP suppressed SK-MEL28 xenografts in mice as effectively as PLX4032 without serious adverse effects. These data demonstrate that mitochondria-targeted agents have therapeutic potential to effectively suppress BRAF–mutated melanomas via an effect(s) distinct from those of B-Raf inhibitors.

Collaboration


Dive into the Seung-Keun Hong's collaboration.

Top Co-Authors

Avatar

Jong-In Park

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pui-Kei Wu

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Dmytro Starenki

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Mansi Karkhanis

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Jin-Hwan Kim

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Jose A. Plaza

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Sudhakar Veeranki

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Won-Cheol Kim

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge