Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jong Seob Jeong is active.

Publication


Featured researches published by Jong Seob Jeong.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2013

Electromagnetic acoustic imaging

Jane F. Emerson; David B. Chang; Stuart McNaughton; Jong Seob Jeong; K. Kirk Shung; Stephen Anthony Cerwin

Electromagnetic acoustic imaging (EMAI) is a new imaging technique that uses long-wavelength RF electromagnetic (EM) waves to induce ultrasound emission. Signal intensity and image contrast have been found to depend on spatially varying electrical conductivity of the medium in addition to conventional acoustic properties. The resultant conductivity- weighted ultrasound data may enhance the diagnostic performance of medical ultrasound in cancer and cardiovascular applications because of the known changes in conductivity of malignancy and blood-filled spaces. EMAI has a potential advantage over other related imaging techniques because it combines the high resolution associated with ultrasound detection with the generation of the ultrasound signals directly related to physiologically important electrical properties of the tissues. Here, we report the theoretical development of EMAI, implementation of a dual-mode EMAI/ultrasound apparatus, and successful demonstrations of EMAI in various phantoms designed to establish feasibility of the approach for eventual medical applications.


Biomedical Microdevices | 2011

Particle manipulation in a microfluidic channel using acoustic trap

Jong Seob Jeong; Jungwoo Lee; Changyang Lee; Shia Yen Teh; Abraham P. Lee; K. Kirk Shung

A high frequency sound beam was employed to explore an experimental method that could control particle motions in a microfluidic device. A 24xa0MHz single element lead zirconate titanate (PZT) transducer was built to transmit a focused ultrasound of variable duty factors (pulse duration/pulse repetition time), and its 1–3 piezocomposite structure established a tight focusing with f-number (focal depth/aperture size) of one. The transducer was excited by the Chebyshev windowed chirp signal sweeping from 18xa0MHz to 30xa0MHz with a 50% of duty factor, in order to ensure that enough sound beams were penetrated into the microfluidic device. The device was fabricated from a polydimethylsiloxane (PDMS) mold, and had a main channel composed of three subchannels among which particles flowed in the middle. A 60~70xa0μm diameter single droplet in the flow could be trapped near the channel bifurcation, and subsequently diverted into the sheath flow by releasing or shifting the acoustic trap. Hence, the results showed the potential use of a focused sound beam in microfluidic devices, and further suggested that this method could be exploited in the development of ultrasound-based flow cytometry and cell sorting devices.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2009

Ultrasound transducer and system for real-time simultaneous therapy and diagnosis for noninvasive surgery of prostate tissue

Jong Seob Jeong; Jin Ho Chang; K. Kirk Shung

For noninvasive treatment of prostate tissue using high-intensity focused ultrasound this paper proposes a design of an integrated multifunctional confocal phased array (IMCPA) and a strategy to perform both imaging and therapy simultaneously with this array. IMCPA is composed of triplerow phased arrays: a 6-MHz array in the center row for imaging and two 4-MHz arrays in the outer rows for therapy. Different types of piezoelectric materials and stack configurations may be employed to maximize their respective functionalities, i.e., therapy and imaging. Fabrication complexity of IMCPA may be reduced by assembling already constructed arrays. In IMCPA, reflected therapeutic signals may corrupt the quality of imaging signals received by the center-row array. This problem can be overcome by implementing a coded excitation approach and/or a notch filter when B-mode images are formed during therapy. The 13-bit Barker code, which is a binary code with unique autocorrelation properties, is preferred for implementing coded excitation, although other codes may also be used. From both Field II simulation and experimental results, we verified whether these remedial approaches would make it feasible to simultaneously carry out imaging and therapy by IMCPA. The results showed that the 13-bit Barker code with 3 cycles per bit provided acceptable performances. The measured -6 dB and -20 dB range mainlobe widths were 0.52 mm and 0.91 mm, respectively, and a range sidelobe level was measured to be -48 dB regardless of whether a notch filter was used. The 13-bit Barker code with 2 cycles per bit yielded -6 dB and -20 dB range mainlobe widths of 0.39 mm and 0.67 mm. Its range sidelobe level was found to be -40 dB after notch filtering. These results indicate the feasibility of the proposed transducer design and system for real-time imaging during therapy.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2011

The feasibility of using thermal strain imaging to regulate energy delivery during intracardiac radio-frequency ablation

Chi Hyung Seo; Douglas N. Stephens; Jonathan M. Cannata; Aaron Dentinger; Feng Lin; Suhyun Park; Douglas Glenn Wildes; Kai E. Thomenius; Peter C. Y. Chen; Tho Hoang Nguyen; A. de La Rama; Jong Seob Jeong; Aman Mahajan; Kalyanam Shivkumar; Amin Nikoozadeh; Omer Oralkan; Uyen Truong; David J. Sahn; Pierre Khuri-Yakub; Matthew O'Donnell

A method is introduced to monitor cardiac ablative therapy by examining slope changes in the thermal strain curve caused by speed of sound variations with temperature. The sound speed of water-bearing tissue such as cardiac muscle increases with temperature. However, at temperatures above about 50°C, there is no further increase in the sound speed and the temperature coefficient may become slightly negative. For ablation therapy, an irreversible injury to tissue and a complete heart block occurs in the range of 48 to 50°C for a short period in accordance with the well-known Arrhenius equation. Using these two properties, we propose a potential tool to detect the moment when tissue damage occurs by using the reduced slope in the thermal strain curve as a function of heating time. We have illustrated the feasibility of this method initially using porcine myocardium in vitro. The method was further demonstrated in vivo, using a specially equipped ablation tip and an 11-MHz microlinear intracardiac echocardiography (ICE) array mounted on the tip of a catheter. The thermal strain curves showed a plateau, strongly suggesting that the temperature reached at least 50°C.


Ultrasonics | 2013

Improved fabrication of focused single element P(VDF–TrFE) transducer for high frequency ultrasound applications

Jong Seob Jeong; K. Kirk Shung

We present an improved fabrication technique for the focused single element poly (vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) transducer. In this work, a conductive epoxy for a backing layer was directly bonded to the 25μm thick P(VDF-TrFE) film and thus made it easy to conform the aperture of the P(VDF-TrFE) transducer. Two prototype focused P(VDF-TrFE) transducers with disk- and ring-type aperture were fabricated and their performance was evaluated using the UBM (Ultrasound Biomicroscopy) system with a wire phantom. All transducers had a spherically focused aperture with a low f-number (focal depth/aperture size=1). The center frequency of the disk-type P(VDF-TrFE) transducer was 23MHz and-6dB bandwidth was 102%. The ring-type P(VDF-TrFE) transducer had 20MHz center frequency and-6dB bandwidth of 103%. The measured pulse echo signal had reduced reverberation due to no additional adhesive layer between the P(VDF-TrFE) film and the backing layer. Hence, the proposed method is promising to fabricate a single element transducer using P(VDF-TrFE) film for high frequency applications.


Physics in Medicine and Biology | 2010

Adaptive HIFU noise cancellation for simultaneous therapy and imaging using an integrated HIFU/imaging transducer

Jong Seob Jeong; Jonathan M. Cannata; K. Kirk Shung

It was previously demonstrated that it is feasible to simultaneously perform ultrasound therapy and imaging of a coagulated lesion during treatment with an integrated transducer that is capable of high intensity focused ultrasound (HIFU) and B-mode ultrasound imaging. It was found that coded excitation and fixed notch filtering upon reception could significantly reduce interference caused by the therapeutic transducer. During HIFU sonication, the imaging signal generated with coded excitation and fixed notch filtering had a range side-lobe level of less than -40 dB, while traditional short-pulse excitation and fixed notch filtering produced a range side-lobe level of -20 dB. The shortcoming is, however, that relatively complicated electronics may be needed to utilize coded excitation in an array imaging system. It is for this reason that in this paper an adaptive noise canceling technique is proposed to improve image quality by minimizing not only the therapeutic interference, but also the remnant side-lobe ripples when using the traditional short-pulse excitation. The performance of this technique was verified through simulation and experiments using a prototype integrated HIFU/imaging transducer. Although it is known that the remnant ripples are related to the notch attenuation value of the fixed notch filter, in reality, it is difficult to find the optimal notch attenuation value due to the change in targets or the media resulted from motion or different acoustic properties even during one sonication pulse. In contrast, the proposed adaptive noise canceling technique is capable of optimally minimizing both the therapeutic interference and residual ripples without such constraints. The prototype integrated HIFU/imaging transducer is composed of three rectangular elements. The 6 MHz center element is used for imaging and the outer two identical 4 MHz elements work together to transmit the HIFU beam. Two HIFU elements of 14.4 mm x 20.0 mm dimensions could increase the temperature of the soft biological tissue from 55 degrees C to 71 degrees C within 60 s. Two types of experiments for simultaneous therapy and imaging were conducted to acquire a single scan-line and B-mode image with an aluminum plate and a slice of porcine muscle, respectively. The B-mode image was obtained using the single element imaging system during HIFU beam transmission. The experimental results proved that the combination of the traditional short-pulse excitation and the adaptive noise canceling method could significantly reduce therapeutic interference and remnant ripples and thus may be a better way to implement real-time simultaneous therapy and imaging.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2011

Backscattering measurement from a single microdroplet

Jungwoo Lee; Jin Ho Chang; Jong Seob Jeong; Changyang Lee; Shia-Yen Teh; Abraham P. Lee; K. Kirk Shung

Backscattering measurements for acoustically trapped lipid droplets were undertaken by employing a P[VDF-TrFE] broadband transducer of f-number = 1, with a bandwidth of 112%. The wide bandwidth allowed the transmission of the 45 MHz trapping signal and the 15 MHz sensing signal using the same transducer. Tone bursts at 45 MHz were first transmitted by the transducer to hold a single droplet at the focus (or the center of the trap) and separate it from its neighboring droplets by translating the transducer perpendicularly to the beam axis. Subsequently, 15 MHz probing pulses were sent to the trapped droplet and the backscattered RF echo signal received by the same transducer. The measured beam width at 15 MHz was measured to be 120 μ m. The integrated backscatter (IB) coefficient of an individual droplet was determined within the 6-dB bandwidth of the transmit pulse by normalizing the power spectrum of the RF signal to the reference spectrum obtained from a flat reflector. The mean IB coefficient for droplets with a 64 μ m average diameter (denoted as cluster A) was -107 dB, whereas it was -93 dB for 90-μm droplets (cluster B). The standard deviation was 0.9 dB for each cluster. The experimental values were then compared with those computed with the T-matrix method and a good agreement was found: the difference was as small as 1 dB for both clusters. These results suggest that this approach might be useful as a means for measuring ultrasonic backscattering from a single microparticle, and illustrate the potential of acoustic sensing for cell sorting.


Ultrasound in Medicine and Biology | 2010

Dual-Focus Therapeutic Ultrasound Transducer for Production of Broad Tissue Lesions

Jong Seob Jeong; Jonathan M. Cannata; K. Kirk Shung

In noninvasive high-intensity focused ultrasound (HIFU) treatment, formation of a large tissue lesion per sonication is desirable for reducing the overall treatment time. The goal of this study is to show the feasibility of enlarging tissue lesion size with a dual-focus therapeutic ultrasound transducer (DFTUT) by increasing the depth-of-focus (DOF). The proposed transducer consists of a disc- and an annular-type element of different radii of curvatures to produce two focal zones. To increase focal depth and to maintain uniform beamwidth of the elongated DOF, each element transmits ultrasound of a different center frequency: the inner element at a higher frequency for near field focusing and the outer element at a lower frequency for far field focusing. By activating two elements at the same time with a single transmitter capable of generating a dual-frequency mixed signal, the overall DOF of the proposed transducer may be extended considerably. A prototype transducer composed of a 4.1 MHz inner element and a 2.7 MHz outer element was fabricated to obtain preliminary experimental results. The feasibility the proposed technique was demonstrated through sound field, temperature and thermal dose simulations. The performance of the prototype transducer was verified by hydrophone measurements and tissue ablation experiments on a beef liver specimen. When several factors affecting the length and the uniformity of elongated DOF of the DFTUT are optimized, the proposed therapeutic ultrasound transducer design may increase the size of ablated tissues in the axial direction and, thus, decreasing the treatment time for a large volume of malignant tissues especially deep-seated targets.


Ultrasonics | 2012

Pulse compression technique for simultaneous HIFU surgery and ultrasonic imaging: A preliminary study

Jong Seob Jeong; Jin Ho Chang; K. Kirk Shung

In an ultrasound image-guided High Intensity Focused Ultrasound (HIFU) surgery, reflected HIFU waves received by an imaging transducer should be suppressed for real-time simultaneous imaging and therapy. In this paper, we investigate the feasibility of pulse compression scheme combined with notch filtering in order to minimize these HIFU interference signals. A chirp signal modulated by the Dolph-Chebyshev window with 3-9MHz frequency sweep range is used for B-mode imaging and 4MHz continuous wave is used for HIFU. The second order infinite impulse response notch filters are employed to suppress reflected HIFU waves whose center frequencies are 4MHz and 8MHz. The prototype integrated HIFU/imaging transducer that composed of three rectangular elements with a spherically con-focused aperture was fabricated. The center element has the ability to transmit and receive 6MHz imaging signals and two outer elements are only used for transmitting 4MHz continuous HIFU wave. When the chirp signal and 4MHz HIFU wave are simultaneously transmitted to the target, the reflected chirp signals mixed with 4MHz and 8MHz HIFU waves are detected by the imaging transducer. After the application of notch filtering with pulse compression process, HIFU interference waves in this mixed signal are significantly reduced while maintaining original imaging signal. In the single scanline test using a strong reflector, the amplitude of the reflected HIFU wave is reduced to -45dB. In vitro test, with a sliced porcine muscle shows that the speckle pattern of the restored B-mode image is close to that of the original image. These preliminary results demonstrate the potential for the pulse compression scheme with notch filtering to achieve real-time ultrasound image-guided HIFU surgery.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2012

Design and characterization of dual-curvature 1.5-dimensional high-intensity focused ultrasound phased-array transducer

Gin-Shin Chen; Che-Yu Lin; Jong Seob Jeong; Jonathan M. Cannata; Win-Li Lin; Hsu Chang; K. Kirk Shung

A dual-curvature focused ultrasound phased-array transducer with a symmetric control has been developed for noninvasive ablative treatment of tumors. The 1.5-D array was constructed in-house and the electro-acoustic conversion efficiency was measured to be approximately 65%. In vitro experiments demonstrated that the array uses 256 independent elements to achieve 2-D wide-range high-intensity electronic focusing.

Collaboration


Dive into the Jong Seob Jeong's collaboration.

Top Co-Authors

Avatar

K. Kirk Shung

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Jonathan M. Cannata

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chi Hyung Seo

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aman Mahajan

University of California

View shared research outputs
Top Co-Authors

Avatar

Changyang Lee

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge