Joo H. Kang
Wyss Institute for Biologically Inspired Engineering
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joo H. Kang.
Nature Medicine | 2014
Joo H. Kang; Michael Super; Chong Wing Yung; Ryan M. Cooper; Karel Domansky; Amanda R. Graveline; Julia Berthet; Heather Tobin; Mark J. Cartwright; Alexander L. Watters; Martin Rottman; Anna Waterhouse; Akiko Mammoto; Nazita Gamini; Melissa J. Rodas; Anxhela Kole; Amanda Jiang; Thomas M Valentin; Alexander Diaz; Kazue Takahashi; Donald E. Ingber
Here we describe a blood-cleansing device for sepsis therapy inspired by the spleen, which can continuously remove pathogens and toxins from blood without first identifying the infectious agent. Blood flowing from an infected individual is mixed with magnetic nanobeads coated with an engineered human opsonin—mannose-binding lectin (MBL)—that captures a broad range of pathogens and toxins without activating complement factors or coagulation. Magnets pull the opsonin-bound pathogens and toxins from the blood; the cleansed blood is then returned back to the individual. The biospleen efficiently removes multiple Gram-negative and Gram-positive bacteria, fungi and endotoxins from whole human blood flowing through a single biospleen unit at up to 1.25 liters per h in vitro. In rats infected with Staphylococcus aureus or Escherichia coli, the biospleen cleared >90% of bacteria from blood, reduced pathogen and immune cell infiltration in multiple organs and decreased inflammatory cytokine levels. In a model of endotoxemic shock, the biospleen increased survival rates after a 5-h treatment.
Journal of the American Chemical Society | 2009
Sergio I. Sanchez; Laurent D. Menard; Ariella Bram; Joo H. Kang; Matthew W. Small; Ralph G. Nuzzo; Anatoly I. Frenkel
The structural dynamics-cluster size and adsorbate-dependent thermal behaviors of the metal-metal (M-M) bond distances and interatomic order-of Pt nanoclusters supported on a gamma-Al(2)O(3) are described. Data from scanning transmission electron microscopy (STEM) and X-ray absorption spectroscopy (XAS) studies reveal that these materials possess a dramatically nonbulklike nature. Under an inert atmosphere small, subnanometer Pt/gamma-Al(2)O(3) clusters exhibit marked relaxations of the M-M bond distances, negative thermal expansion (NTE) with an average linear thermal expansion coefficient alpha = (-2.4 +/- 0.4) x 10(-5) K(-1), large static disorder and dynamical bond (interatomic) disorder that is poorly modeled within the constraints of classical theory. The data further demonstrate a significant temperature-dependence to the electronic structure of the Pt clusters, thereby suggesting the necessity of an active model to describe the cluster/support interactions mediating the clusters dynamical structure. The quantitative dependences of these nonbulklike behaviors on cluster size (0.9 to 2.9 nm), ambient atmosphere (He, 4% H(2) in He or 20% O(2) in He) and support identity (gamma-Al(2)O(3) or carbon black) are systematically investigated. We show that the nonbulk structural, electronic and dynamical perturbations are most dramatically evidenced for the smallest clusters. The adsorption of hydrogen on the clusters leads to an increase of the Pt-Pt bondlengths (due to a lifting of the surface relaxation) and significant attenuation of the disorder present in the system. Oxidation of these same clusters has the opposite effect, leading to an increase in Pt-Pt bond strain and subsequent enhancement in nonbulklike thermal properties. The structural and electronic properties of Pt nanoclusters supported on carbon black contrast markedly with those of the Pt/gamma-Al(2)O(3) samples in that neither NTE nor comparable levels of atomic disorder are observed. The Pt/C nanoclusters do exhibit, however, both size- and adsorbate-induced trends in bond strain that are similar to those of their Pt/gamma-Al(2)O(3) analogues. Taken together, the data highlight the significant role that electronic effects--specifically charge exchange due to both metal-support and metal-adsorbate interactions--play in mediating the structural dynamics of supported nanoscale metal clusters that are broadly used as heterogeneous catalysts.
Lab on a Chip | 2008
Joo H. Kang; Yu Chang Kim; Je-Kyun Park
We report an analysis of pressure-driven bubble elimination for a gas-permeable microfluidic device. In this study, we described bubble elimination in a microfluidic device employing a gas permeation model and calculated the removal efficiency of bubbles. The correction factor for the simplified model was estimated with respect to the applied pressure. Based on the established model, the required time to remove a trapped bubble with a certain area was shown to be within an error of 11.58% by comparison with experimental results. Exploiting the model equation, we were able to completely remove the air bubbles appearing during the process of filling a microfluidic device with an aqueous solution.
Nano Letters | 2012
Mathumai Kanapathipillai; Akiko Mammoto; Joo H. Kang; Elisabeth Jiang; Kaustabh Ghosh; Netanel Korin; Ashley Gibbs; Robert Mannix; Donald E. Ingber
A cancer nanotherapeutic has been developed that targets the extracellular matrix (ECM)-modifying enzyme lysyl oxidase (LOX) and alters the ECM structure. Poly(d,l-lactide-co-glycolide) nanoparticles (∼220 nm) coated with a LOX inhibitory antibody bind to ECM and suppress mammary cancer cell growth and invasion in vitro as well as tumor expansion in vivo, with greater efficiency than soluble anti-LOX antibody. This nanomaterials approach opens a new path for treating cancer with higher efficacy and decreased side effects.
Journal of the American Chemical Society | 2011
Matthew W. Small; Sergio I. Sanchez; Laurent D. Menard; Joo H. Kang; Anatoly I. Frenkel; Ralph G. Nuzzo
This study describes a prototypical, bimetallic heterogeneous catalyst: compositionally well-defined Ir-Pt nanoclusters with sizes in the range of 1-2 nm supported on γ-Al(2)O(3). Deposition of the molecular bimetallic cluster [Ir(3)Pt(3)(μ-CO)(3)(CO)(3)(η-C(5)Me(5))(3)] on γ-Al(2)O(3), and its subsequent reduction with hydrogen, provides highly dispersed supported bimetallic Ir-Pt nanoparticles. Using spherical aberration-corrected scanning transmission electron microscopy (C(s)-STEM) and theoretical modeling of synchrotron-based X-ray absorption spectroscopy (XAS) measurements, our studies provide unambiguous structural assignments for this model catalytic system. The atomic resolution C(s)-STEM images reveal strong and specific lattice-directed strains in the clusters that follow local bonding configurations of the γ-Al(2)O(3) support. Combined nanobeam diffraction (NBD) and high-resolution transmission electron microscopy (HRTEM) data suggest the polycrystalline γ-Al(2)O(3) support material predominantly exposes (001) and (011) surface planes (ones commensurate with the zone axis orientations frequently exhibited by the bimetallic clusters). The data reveal that the supported bimetallic clusters exhibit complex patterns of structural dynamics, ones evidencing perturbations of an underlying oblate/hemispherical cuboctahedral cluster-core geometry with cores that are enriched in Ir (a result consistent with models based on surface energetics, which favor an ambient cluster termination by Pt) due to the dynamical responses of the M-M bonding to the specifics of the adsorbate and metal-support interactions. Taken together, the data demonstrate that strong temperature-dependent charge-transfer effects occur that are likely mediated variably by the cluster-support, cluster-adsorbate, and intermetallic bonding interactions.
Journal of Micromechanics and Microengineering | 2009
Joo H. Kang; Eujin Um; Je-Kyun Park
We report a simple method for the fabrication of a poly(dimethylsiloxane) (PDMS) membrane with through-holes by blowing a residual prepolymer away from a photoresist (PR)-patterned Si wafer. The fabrication method for the perforated polymer membrane is crucial to achieve both complicated three-dimensional microfluidic devices and polymer sieve sheets. This method has several advantages over the previous methods in that we can repeatedly make the well-defined holes on the PDMS membranes even if the excess prepolymer remains on the PR mold after spincoating at a relatively low rpm. In addition, the desired pattern can be selectively perforated from the whole wafer even if the mold is fabricated by single-step lithography.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Jonathan Shemesh; Tom Ben Arye; Jonathan Avesar; Joo H. Kang; Amir Fine; Michael Super; Amit Meller; Donald E. Ingber; Shulamit Levenberg
Significance There is a substantial need for single-cell platforms in which each cell is chemically isolated in its own microenvironment and a lack of such platforms that support adherent cells. We present here a method that generates stationary nanoliter droplet arrays on a substrate of choice and supports long-term incubation and interrogation of single cells. We demonstrate the encapsulation of single human dermal fibroblast cells and their substrate attachment, viability, and proliferation, and show they can be retrieved and interfaced to standard cell culturing techniques. We also demonstrate a single-cell metabolic assay and track it over selected groups of indexed traps. The device does not require external equipment or machinery, making it available for point-of-care applications. Microfluidic water-in-oil droplets that serve as separate, chemically isolated compartments can be applied for single-cell analysis; however, to investigate encapsulated cells effectively over prolonged time periods, an array of droplets must remain stationary on a versatile substrate for optimal cell compatibility. We present here a platform of unique geometry and substrate versatility that generates a stationary nanodroplet array by using wells branching off a main microfluidic channel. These droplets are confined by multiple sides of a nanowell and are in direct contact with a biocompatible substrate of choice. The device is operated by a unique and reversed loading procedure that eliminates the need for fine pressure control or external tubing. Fluorocarbon oil isolates the droplets and provides soluble oxygen for the cells. By using this approach, the metabolic activity of single adherent cells was monitored continuously over time, and the concentration of viable pathogens in blood-derived samples was determined directly by measuring the number of colony-formed droplets. The method is simple to operate, requires a few microliters of reagent volume, is portable, is reusable, and allows for cell retrieval. This technology may be particularly useful for multiplexed assays for which prolonged and simultaneous visual inspection of many isolated single adherent or nonadherent cells is required.
Small | 2015
Joo H. Kang; Eujin Um; Alexander Diaz; Harry Driscoll; Melissa J. Rodas; Karel Domansky; Alexander L. Watters; Michael Super; Howard A. Stone; Donald E. Ingber
Magnetic nanoparticles have been employed to capture pathogens for many biological applications; however, optimal particle sizes have been determined empirically in specific capturing protocols. Here, a theoretical model that simulates capture of bacteria is described and used to calculate bacterial collision frequencies and magnetophoretic properties for a range of particle sizes. The model predicts that particles with a diameter of 460 nm should produce optimal separation of bacteria in buffer flowing at 1 L h(-1) . Validating the predictive power of the model, Staphylococcus aureus is separated from buffer and blood flowing through magnetic capture devices using six different sizes of magnetic particles. Experimental magnetic separation in buffer conditions confirms that particles with a diameter closest to the predicted optimal particle size provide the most effective capture. Modeling the capturing process in plasma and blood by introducing empirical constants (ce ), which integrate the interfering effects of biological components on the binding kinetics of magnetic beads to bacteria, smaller beads with 50 nm diameters are predicted that exhibit maximum magnetic separation of bacteria from blood and experimentally validated this trend. The predictive power of the model suggests its utility for the future design of magnetic separation for diagnostic and therapeutic applications.
Applied Physics Letters | 2016
Joo H. Kang; Harry Driscoll; Michael Super; Donald E. Ingber
Here, we describe a versatile application of a planar Halbach permanent magnet array for an efficient long-range magnetic separation of living cells and microparticles over distances up to 30 mm. A Halbach array was constructed from rectangular bar magnets using 3D-printed holders and compared to a conventional alternating array of identical magnets. We theoretically predicted the superiority of the Halbach array for a long-range magnetic separation and then experimentally validated that the Halbach configuration outperforms the alternating array for isolating magnetic microparticles or microparticle-bound bacterial cells at longer distances. Magnetophoretic velocities (ymag) of magnetic particles (7.9 μm diameter) induced by the Halbach array in a microfluidic device were significantly higher and extended over a larger area than those induced by the alternating magnet array (ymag = 178 versus 0 μm/s at 10 mm, respectively). When applied to 50 ml tubes (∼30 mm diameter), the Halbach array removed >95% of ...
EBioMedicine | 2016
Mark Cartwright; Martin Rottman; Nathan I. Shapiro; Benjamin T. Seiler; Patrick Lombardo; Nazita Gamini; Julie Tomolonis; Alexander L. Watters; Anna Waterhouse; Daniel C. Leslie; Dana Bolgen; Amanda R. Graveline; Joo H. Kang; Tohid Fatanat Didar; Nikolaos Dimitrakakis; David Cartwright; Michael Super; Donald E. Ingber
Background Blood cultures, and molecular diagnostic tests that directly detect pathogen DNA in blood, fail to detect bloodstream infections in most infected patients. Thus, there is a need for a rapid test that can diagnose the presence of infection to triage patients, guide therapy, and decrease the incidence of sepsis. Methods An Enzyme-Linked Lectin-Sorbent Assay (ELLecSA) that uses magnetic microbeads coated with an engineered version of the human opsonin, Mannose Binding Lectin, containing the Fc immunoglobulin domain linked to its carbohydrate recognition domain (FcMBL) was developed to quantify pathogen-associated molecular patterns (PAMPs) in whole blood. This assay was tested in rats and pigs to explore whether it can detect infections and monitor disease progression, and in prospectively enrolled, emergency room patients with suspected sepsis. These results were also compared with data obtained from non-infected patients with or without traumatic injuries. Results The FcMBL ELLecSA was able to detect PAMPS present on, or released by, 85% of clinical isolates representing 47 of 55 different pathogen species, including the most common causes of sepsis. The PAMP assay rapidly (< 1 h) detected the presence of active infection in animals, even when blood cultures were negative and bacteriocidal antibiotics were administered. In patients with suspected sepsis, the FcMBL ELLecSA detected infection in 55 of 67 patients with high sensitivity (> 81%), specificity (> 89%), and diagnostic accuracy of 0·87. It also distinguished infection from trauma-related inflammation in the same patient cohorts with a higher specificity than the clinical sepsis biomarker, C-reactive Protein. Conclusion The FcMBL ELLecSA-based PAMP assay offers a rapid, simple, sensitive and specific method for diagnosing infections, even when blood cultures are negative and antibiotic therapy has been initiated. It may help to triage patients with suspected systemic infections, and serve as a companion diagnostic to guide administration of emerging dialysis-like sepsis therapies.