Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joo-Hyon Kang is active.

Publication


Featured researches published by Joo-Hyon Kang.


Water Research | 2010

Linking land-use type and stream water quality using spatial data of fecal indicator bacteria and heavy metals in the Yeongsan river basin

Joo-Hyon Kang; Seung Won Lee; Kyung Hwa Cho; Seo Jin Ki; Sung Min Cha; Joon Ha Kim

This study reveals land-use factors that explain stream water quality during wet and dry weather conditions in a large river basin using two different linear models-multiple linear regression (MLR) models and constrained least squares (CLS) models. Six land-use types and three topographical parameters (size, slope, and permeability) of the watershed were incorporated into the models as explanatory variables. The suggested models were then demonstrated using a digitized elevation map in conjunction with the land-use and the measured concentration data for Escherichia coli (EC), Enterococci bacteria (ENT), and six heavy metal species collected monthly during 2007-2008 at 50 monitoring sites in the Yeongsan Watershed, Korea. The results showed that the MLR models can be a powerful tool for predicting the average concentrations of pollutants in stream water (the Nash-Sutcliffe (NS) model efficiency coefficients ranged from 0.67 to 0.95). On the other hand, the CLS models, with moderately good prediction performance (the NS coefficients ranged 0.28-0.85), were more suitable for quantifying contributions of respective land-uses to the stream water quality. The CLS models suggested that industrial and urban land-uses are major contributors to the stream concentrations of EC and ENT, whereas agricultural, industrial, and mining areas were significant sources of many heavy metal species. In addition, the slope, size, and permeability of the watershed were found to be important factors determining the extent of the contribution from each land-use type to the stream water quality. The models proposed in this paper can be considered useful tools for developing land cover guidelines and for prioritizing locations for implementing management practices to maintain stream water quality standard in a large river basin.


Water Research | 2010

Meteorological effects on the levels of fecal indicator bacteria in an urban stream: a modeling approach.

Kyung Hwa Cho; Sung Min Cha; Joo-Hyon Kang; Seung Won Lee; Yongeun Park; Jung-Woo Kim; Joon Ha Kim

Gwangju Creek (GJC) in Korea, which drains a highly urbanized watershed, has suffered from substantial fecal contamination, thereby limiting the beneficial use of the water in addition to threatening public health. In this study, to quantitatively estimate the sinks and sources of fecal indicator bacteria (FIB) in GJC under varying meteorological conditions, two FIB (i.e., Escherichia coli and enterococci bacteria) were monitored hourly for 24h periods during both wet and dry weather conditions at four sites along GJC, and the collected data was subsequently used to develop a spatiotemporal FIB prediction model. The monitoring data revealed that storm washoff and irradiational die-off by sunlight are the two key processes controlling FIB populations in wet and dry weather, respectively. FIB populations significantly increased during precipitation, with greater concentrations occurring at higher rainfall intensity. During dry weather, FIB populations decreased in the presence of sunlight in daytime but quickly recovered at nighttime due to continuous point-source inputs. In this way, the contributions of the key processes (i.e., irradiational die-off by sunlight, settling, storm washoff, and resuspension) to the FIB levels in GJC under different meteorological conditions were quantitatively estimated using the developed model. The modeling results showed that the die-off by sunlight is the major sink of FIB during the daytime in dry weather with a minor contribution from the settling process. During wet weather, storm washoff and resuspension are equally important processes that are responsible for the substantial increase of FIB populations.


Science of The Total Environment | 2009

Characteristics of wet and dry weather heavy metal discharges in the Yeongsan Watershed, Korea

Joo-Hyon Kang; Yun Seok Lee; Seo Jin Ki; Young Geun Lee; Sung Min Cha; Kyung Hwa Cho; Joon Ha Kim

A comprehensive water quality monitoring program was conducted in the Yeongsan (YS) River, Korea from 2005 to present to investigate wet and dry weather pollutant discharge in an attempt to establish point and non-point pollution management strategies. As part of this monitoring program, 11 heavy metal species were measured during dry and wet weather conditions in the YS River, where Gwangju City (GJ), a subcatchment of the YS River, was further monitored to clarify the responsibility of different metal species discharged into the mainstream. Monthly grab water samples showed that greater amounts of metals along the YS River were discharged during the wet summer months due largely to storm runoff. In addition, further monitoring results revealed that GJ, a highly urbanized area, was a significant contributor of the heavy metals being discharged into the YS River during both wet and dry weather. The most abundant metal species discharged from GJ were manganese, aluminum and iron with different contributions of wet and dry weather flows to the total discharge load. Wet weather flow was a significant contributor to the annual dissolved metal loads, accounting for 44-93% of the annual load depending on the metal species, with the exception of chromium and cadmium (9% and 27%, respectively). Mostly, metal loads during wet weather were shown to be proportional to the rainfall depth and antecedent dry period. A substantial fraction of metals were also associated with solids, suggesting that sedimentation might be an appropriate management practice for reducing the metal load generated in GJ. Overall, although dissolved metal concentrations in YS River were at an acceptable level for aquatic community protection, continual metal discharge throughout the year was considered to be a potential problem in the long-term due to gradual water quality degradation as well as continuous metal accumulation in the system.


Science of The Total Environment | 2009

Determination of the optimal parameters in regression models for the prediction of chlorophyll-a: A case study of the Yeongsan Reservoir, Korea

Kyung Hwa Cho; Joo-Hyon Kang; Seo Jin Ki; Yongeun Park; Sung Min Cha; Joon Ha Kim

Statistical regression models involve linear equations, which often lead to significant prediction errors due to poor statistical stability and accuracy. This concern arises from multicollinearity in the models, which may drastically affect model performance in terms of a trade-off scenario for effective water resource management logistics. In this paper, we propose a new methodology for improving the statistical stability and accuracy of regression models, and then show how to cope with pitfalls in the models and determine optimal parameters with a decreased number of predictive variables. Here, a comparison of the predictive performance was made using four types of multiple linear regression (MLR) and principal component regression (PCR) models in the prediction of chlorophyll-a (chl-a) concentration in the Yeongsan (YS) Reservoir, Korea, an estuarine reservoir that historically suffers from high levels of nutrient input. During a 3-year water quality monitoring period, results showed that PCRs could be a compact solution for improving the accuracy of the models, as in each case MLR could not accurately produce reliable predictions due to a persistent collinearity problem. Furthermore, based on R(2) (goodness of fit) and F-overall number (confidence of regression), and the number of explanatory variables (R-F-N) curve, it was revealed that PCR-F(7) was the best model among the four regression models in predicting chl-a, having the fewest explanatory variables (seven) and the lowest uncertainty. Seven PCs were identified as significant variables, related to eight water quality parameters: pH, 5-day biochemical oxygen demand, total coliform, fecal indicator bacteria, chemical oxygen demand, ammonia-nitrogen, total nitrogen, and dissolved oxygen. Overall, the results not only demonstrated that the models employed successfully simulated chl-a in a reservoir in both the test and validation periods, but also suggested that the optimal parameters should cautiously be considered in the design of regression models.


Science of The Total Environment | 2014

Developing a flow control strategy to reduce nutrient load in a reclaimed multi-reservoir system using a 2D hydrodynamic and water quality model.

Yongeun Park; Kyung Hwa Cho; Joo-Hyon Kang; Seung Won Lee; Joon Ha Kim

Blocking the natural bi-directional flow in an estuarine system using an artificial dyke has commonly caused serious water quality problems. In the southwestern part of South Korea, a parallel triple-reservoir system was constructed by blocking the mouth of three different rivers (Yeongsan, Okcheon, and Kumja), which were then interconnected using two open channels. This system has experienced a deterioration in water quality due to pollutants accumulated from the upper watershed, and has continually discharged pollutant loads to the outer ocean. Therefore, the objective of this study is to establish an effective dam operation plan for reducing nutrient loads released from the integrated reservoir. In this study, the CE-QUAL-W2 model, which is a 2-dimentional hydrodynamic and water quality model, was applied to predict the pollutant load released from each reservoir in response to different flow scenarios for the interconnecting channel. The model was calibrated using two novel methods: a sensitivity analysis to determine meaningful model parameters, and a pattern search to optimize the parameters. From the scenario analysis using flow control, it was determined that the total nitrogen (TN) and total phosphorus (TP) loadings could be reduced by 27.2% and 6.6%, respectively, under the optimal channel flow scenario by regulating the chlorophyll-a concentration in the reservoir. The results confirm that effective dam operation could contribute to a decrease in pollutant loads in the receiving seawater body. As such, this study suggests operational strategies for a multi-reservoir system that can be used to reduce the nutrient load being discharged from reservoirs.


Environmental Pollution | 2012

Distribution of antibiotic resistance in urban watershed in Japan.

Young-Sik Ham; Hiromi Kobori; Joo-Hyon Kang; Takayuki Matsuzaki; Michiyo Iino; Hayashi Nomura

Antibiotic-resistant E. coli concentrations showed large spatial and temporal variations, with greater concentrations observed in tributaries and downstream than in the upstream and midstream. Twenty percent of the geometric mean concentrations of antibiotic-resistant E. coli in the Tama River basin (Japan) exceeded the maximum acceptable concentration of indicator E. coli established by the USEPA. The indicator E. coli concentrations were positively correlated with those of antibiotic-resistant E. coli and multiple-antibiotic-resistant E. coli (resistance to more than two kinds of antibiotics), respectively, but not the detection rate of antibiotic-resistant E. coli, implying that use of antibiotic-resistant E. coli concentration rather than the detection rate can be a better approach for water quality assessment. Multiple-antibiotic-resistant E. coli is a useful indicator for estimating the resistance diffusion, water quality degradation and public health risk potential. This assessment provides beneficial information for setting national regulatory or environmental standards and managing integrated watershed areas.


Journal of Environmental Sciences-china | 2010

Evaluation of the relationship between two different methods for enumeration fecal indicator bacteria: colony-forming unit and most probable number.

Kyung Hwa Cho; Dukki Han; Yongeun Park; Seung Won Lee; Sung Min Cha; Joo-Hyon Kang; Joon Ha Kim

Most probable number (MPN) and colony-forming unit (CFU) estimates of fecal indicator bacteria (FIB) concentration are common measures of water quality in aquatic environments. Thus, FIB intensively monitored in Yeongsan Watershed in an attempt to compare two different methods and to develop a statistical model to convert from CFU to MPN estimates or vice versa. As a result, the significant difference was found in the MPN and CFU estimates. The enumerated Escherichia coli concentrations in MPN are greater than those in CFU, except for the measurement in winter. Especially in fall, E. coli concentrations in MPN are one order of magnitude greater than that in CFU. Contrarily, enterococci bacteria in MPN are lower than those in CFU. However, in general, a strongly positive relationship are found between MPN and CFU estimates. Therefore, the statistical models were developed, and showed the reasonable converting FIB concentrations from CFU estimates to MPN estimates. We expect this study will provide preliminary information towards future research on whether different analysis methods may result in different water quality standard violation frequencies for the same water sample.


Science of The Total Environment | 2016

Monitoring and predicting the fecal indicator bacteria concentrations from agricultural, mixed land use and urban stormwater runoff

M.A. Paule-Mercado; Jey-R S. Ventura; S.A. Memon; Deokjin Jahng; Joo-Hyon Kang; Chang-Hee Lee

While the urban runoff are increasingly being studied as a source of fecal indicator bacteria (FIB), less is known about the occurrence of FIB in watershed with mixed land use and ongoing land use and land cover (LULC) change. In this study, Escherichia coli (EC) and fecal streptococcus (FS) were monitored from 2012 to 2013 in agricultural, mixed and urban LULC and analyzed according to the most probable number (MPN). Pearson correlation was used to determine the relationship between FIB and environmental parameters (physicochemical and hydrometeorological). Multiple linear regressions (MLR) were used to identify the significant parameters that affect the FIB concentrations and to predict the response of FIB in LULC change. Overall, the FIB concentrations were higher in urban LULC (EC=3.33-7.39; FS=3.30-7.36log10MPN/100mL) possibly because of runoff from commercial market and 100% impervious cover (IC). Also, during early-summer season; this reflects a greater persistence and growth rate of FIB in a warmer environment. During intra-event, however, the FIB concentrations varied according to site condition. Anthropogenic activities and IC influenced the correlation between the FIB concentrations and environmental parameters. Stormwater temperature (TEMP), turbidity, and TSS positively correlated with the FIB concentrations (p>0.01), since IC increased, implying an accumulation of bacterial sources in urban activities. TEMP, BOD5, turbidity, TSS, and antecedent dry days (ADD) were the most significant explanatory variables for FIB as determined in MLR, possibly because they promoted the FIB growth and survival. The model confirmed the FIB concentrations: EC (R(2)=0.71-0.85; NSE=0.72-0.86) and FS (R(2)=0.65-0.83; NSE=0.66-0.84) are predicted to increase due to urbanization. Therefore, these findings will help in stormwater monitoring strategies, designing the best management practice for FIB removal and as input data for stormwater models.


Journal of Environmental Management | 2013

Optimal design of a hydrodynamic separator for treating runoff from roadways.

Duyen Tran; Joo-Hyon Kang

This study investigated the removal efficiency of target pollutants from an underground stormwater treatment device (a hydrodynamic separator), focusing on the overall performance of the devices of a catchment. An approach for sizing an underground stormwater treatment device was developed, in order to obtain the required reduction percentage of the total suspended solids (TSS) generated from a given impervious catchment. The United States Environmental Protection Agencys stormwater management model (SWMM) was used for developing contours to help determine the size of the device, with respect to the maximum inflow to the device (or bypass rate), and the catchment area served by the device. Additionally, three different configurations of underground stormwater treatment devices were examined. It was found that, for a given catchment area, a single large device provides slightly better performance than multiple small devices. The approach we propose here can be useful to determine the sizes, as well as to clarify the efficiencies, of different installation configurations of underground stormwater treatment device (e.g. a hydrodynamic separator) in relation to their bypass rates and site specific conditions, such as rainfall characteristics and the catchment area to be served.


Water Science and Technology | 2009

Interpretation of seasonal water quality variation in the Yeongsan Reservoir, Korea using multivariate statistical analyses.

Kyung Hwa Cho; Yongeun Park; Joo-Hyon Kang; Seo Jin Ki; Sungmin Cha; Seung Won Lee; Joon Ha Kim

The Yeongsan (YS) Reservoir is an estuarine reservoir which provides surrounding areas with public goods, such as water supply for agricultural and industrial areas and flood control. Beneficial uses of the YS Reservoir, however, are recently threatened by enriched non-point and point source inputs. A series of multivariate statistical approaches including principal component analysis (PCA) were applied to extract significant characteristics contained in a large suite of water quality data (18 variables monthly recorded for 5 years); thereby to provide the important phenomenal information for establishing effective water resource management plans for the YS Reservoir. The PCA results identified the most important five principal components (PCs), explaining 71% of total variance of the original data set. The five PCs were interpreted as hydro-meteorological effect, nitrogen loading, phosphorus loading, primary production of phytoplankton, and fecal indicator bacteria (FIB) loading. Furthermore, hydro-meteorological effect and nitrogen loading could be characterized by a yearly periodicity whereas FIB loading showed an increasing trend with respect to time. The study results presented here might be useful to establish preliminary strategies for abating water quality degradation in the YS Reservoir.

Collaboration


Dive into the Joo-Hyon Kang's collaboration.

Top Co-Authors

Avatar

Joon Ha Kim

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Kyung Hwa Cho

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sung Min Cha

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Seo Jin Ki

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seung Won Lee

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yun Seok Lee

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Young Geun Lee

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yongeun Park

Gwangju Institute of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge