Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yongeun Park is active.

Publication


Featured researches published by Yongeun Park.


Water Research | 2010

Meteorological effects on the levels of fecal indicator bacteria in an urban stream: a modeling approach.

Kyung Hwa Cho; Sung Min Cha; Joo-Hyon Kang; Seung Won Lee; Yongeun Park; Jung-Woo Kim; Joon Ha Kim

Gwangju Creek (GJC) in Korea, which drains a highly urbanized watershed, has suffered from substantial fecal contamination, thereby limiting the beneficial use of the water in addition to threatening public health. In this study, to quantitatively estimate the sinks and sources of fecal indicator bacteria (FIB) in GJC under varying meteorological conditions, two FIB (i.e., Escherichia coli and enterococci bacteria) were monitored hourly for 24h periods during both wet and dry weather conditions at four sites along GJC, and the collected data was subsequently used to develop a spatiotemporal FIB prediction model. The monitoring data revealed that storm washoff and irradiational die-off by sunlight are the two key processes controlling FIB populations in wet and dry weather, respectively. FIB populations significantly increased during precipitation, with greater concentrations occurring at higher rainfall intensity. During dry weather, FIB populations decreased in the presence of sunlight in daytime but quickly recovered at nighttime due to continuous point-source inputs. In this way, the contributions of the key processes (i.e., irradiational die-off by sunlight, settling, storm washoff, and resuspension) to the FIB levels in GJC under different meteorological conditions were quantitatively estimated using the developed model. The modeling results showed that the die-off by sunlight is the major sink of FIB during the daytime in dry weather with a minor contribution from the settling process. During wet weather, storm washoff and resuspension are equally important processes that are responsible for the substantial increase of FIB populations.


Science of The Total Environment | 2015

Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea

Yongeun Park; Kyung Hwa Cho; Jihwan Park; Sung Min Cha; Joon Ha Kim

Chlorophyll-a (Chl-a) is a direct indicator used to evaluate the ecological state of a waterbody, such as algal blooms that degrade the water quality in lakes, reservoirs and estuaries. In this study, artificial neural network (ANN) and support vector machine (SVM) were used to predict Chl-a concentration for the early warning in the Juam Reservoir and Yeongsan Reservoir, which are located in an upstream region (freshwater reservoir) and downstream region (estuarine reservoir), respectively. Weekly water quality data and meteorological data for a 7-year period were used to train and validate both the ANN and SVM models. The Latin-hypercube one-factor-at-a-time (LH-OAT) method and a pattern search algorithm were applied to perform sensitivity analyses for the input variables and to optimize the parameters of the two models, respectively. Results revealed that the two models well-reproduced the temporal variation of Chl-a based on the weekly input variables. In particular, the SVM model showed better performance than the ANN model, displaying a higher prediction accuracy in the validation step. The Williams-Kloot test and sensitivity analysis demonstrated that the SVM model was superior for predicting Chl-a in terms of prediction accuracy and description of the cause-and-effect relationship between Chl-a concentration and environmental variables in both the Juam Reservoir and Yeongsan Reservoir. Furthermore, a 7-day interval was determined as an efficient early warning interval in the two reservoirs. As such, this study suggested an effective early-warning prediction method for Chl-a concentration and improved the eutrophication management scheme for reservoirs.


Science of The Total Environment | 2009

Determination of the optimal parameters in regression models for the prediction of chlorophyll-a: A case study of the Yeongsan Reservoir, Korea

Kyung Hwa Cho; Joo-Hyon Kang; Seo Jin Ki; Yongeun Park; Sung Min Cha; Joon Ha Kim

Statistical regression models involve linear equations, which often lead to significant prediction errors due to poor statistical stability and accuracy. This concern arises from multicollinearity in the models, which may drastically affect model performance in terms of a trade-off scenario for effective water resource management logistics. In this paper, we propose a new methodology for improving the statistical stability and accuracy of regression models, and then show how to cope with pitfalls in the models and determine optimal parameters with a decreased number of predictive variables. Here, a comparison of the predictive performance was made using four types of multiple linear regression (MLR) and principal component regression (PCR) models in the prediction of chlorophyll-a (chl-a) concentration in the Yeongsan (YS) Reservoir, Korea, an estuarine reservoir that historically suffers from high levels of nutrient input. During a 3-year water quality monitoring period, results showed that PCRs could be a compact solution for improving the accuracy of the models, as in each case MLR could not accurately produce reliable predictions due to a persistent collinearity problem. Furthermore, based on R(2) (goodness of fit) and F-overall number (confidence of regression), and the number of explanatory variables (R-F-N) curve, it was revealed that PCR-F(7) was the best model among the four regression models in predicting chl-a, having the fewest explanatory variables (seven) and the lowest uncertainty. Seven PCs were identified as significant variables, related to eight water quality parameters: pH, 5-day biochemical oxygen demand, total coliform, fecal indicator bacteria, chemical oxygen demand, ammonia-nitrogen, total nitrogen, and dissolved oxygen. Overall, the results not only demonstrated that the models employed successfully simulated chl-a in a reservoir in both the test and validation periods, but also suggested that the optimal parameters should cautiously be considered in the design of regression models.


Science of The Total Environment | 2014

Developing a flow control strategy to reduce nutrient load in a reclaimed multi-reservoir system using a 2D hydrodynamic and water quality model.

Yongeun Park; Kyung Hwa Cho; Joo-Hyon Kang; Seung Won Lee; Joon Ha Kim

Blocking the natural bi-directional flow in an estuarine system using an artificial dyke has commonly caused serious water quality problems. In the southwestern part of South Korea, a parallel triple-reservoir system was constructed by blocking the mouth of three different rivers (Yeongsan, Okcheon, and Kumja), which were then interconnected using two open channels. This system has experienced a deterioration in water quality due to pollutants accumulated from the upper watershed, and has continually discharged pollutant loads to the outer ocean. Therefore, the objective of this study is to establish an effective dam operation plan for reducing nutrient loads released from the integrated reservoir. In this study, the CE-QUAL-W2 model, which is a 2-dimentional hydrodynamic and water quality model, was applied to predict the pollutant load released from each reservoir in response to different flow scenarios for the interconnecting channel. The model was calibrated using two novel methods: a sensitivity analysis to determine meaningful model parameters, and a pattern search to optimize the parameters. From the scenario analysis using flow control, it was determined that the total nitrogen (TN) and total phosphorus (TP) loadings could be reduced by 27.2% and 6.6%, respectively, under the optimal channel flow scenario by regulating the chlorophyll-a concentration in the reservoir. The results confirm that effective dam operation could contribute to a decrease in pollutant loads in the receiving seawater body. As such, this study suggests operational strategies for a multi-reservoir system that can be used to reduce the nutrient load being discharged from reservoirs.


Water Research | 2016

Modeling Fate and Transport of Fecally-derived Microorganisms at the Watershed Scale: State of the Science and Future Opportunities

Kyung Hwa Cho; Yakov A. Pachepsky; David M. Oliver; Richard Muirhead; Yongeun Park; Richard S. Quilliam; Daniel R. Shelton

Natural waters serve as habitat for a wide range of microorganisms, a proportion of which may be derived from fecal material. A number of watershed models have been developed to understand and predict the fate and transport of fecal microorganisms within complex watersheds, as well as to determine whether microbial water quality standards can be satisfied under site-specific meteorological and/or management conditions. The aim of this review is to highlight and critically evaluate developments in the modeling of microbial water quality of surface waters over the last 10 years and to discuss the future of model development and application at the watershed scale, with a particular focus on fecal indicator organisms (FIOs). In doing so, an agenda of research opportunities is identified to help deliver improvements in the modeling of microbial water quality draining through complex landscape systems. This comprehensive review therefore provides a timely steer to help strengthen future modeling capability of FIOs in surface water environments and provides a useful resource to complement the development of risk management strategies to reduce microbial impairment of freshwater sources.


Journal of Environmental Sciences-china | 2010

Evaluation of the relationship between two different methods for enumeration fecal indicator bacteria: colony-forming unit and most probable number.

Kyung Hwa Cho; Dukki Han; Yongeun Park; Seung Won Lee; Sung Min Cha; Joo-Hyon Kang; Joon Ha Kim

Most probable number (MPN) and colony-forming unit (CFU) estimates of fecal indicator bacteria (FIB) concentration are common measures of water quality in aquatic environments. Thus, FIB intensively monitored in Yeongsan Watershed in an attempt to compare two different methods and to develop a statistical model to convert from CFU to MPN estimates or vice versa. As a result, the significant difference was found in the MPN and CFU estimates. The enumerated Escherichia coli concentrations in MPN are greater than those in CFU, except for the measurement in winter. Especially in fall, E. coli concentrations in MPN are one order of magnitude greater than that in CFU. Contrarily, enterococci bacteria in MPN are lower than those in CFU. However, in general, a strongly positive relationship are found between MPN and CFU estimates. Therefore, the statistical models were developed, and showed the reasonable converting FIB concentrations from CFU estimates to MPN estimates. We expect this study will provide preliminary information towards future research on whether different analysis methods may result in different water quality standard violation frequencies for the same water sample.


Water Science and Technology | 2009

Interpretation of seasonal water quality variation in the Yeongsan Reservoir, Korea using multivariate statistical analyses.

Kyung Hwa Cho; Yongeun Park; Joo-Hyon Kang; Seo Jin Ki; Sungmin Cha; Seung Won Lee; Joon Ha Kim

The Yeongsan (YS) Reservoir is an estuarine reservoir which provides surrounding areas with public goods, such as water supply for agricultural and industrial areas and flood control. Beneficial uses of the YS Reservoir, however, are recently threatened by enriched non-point and point source inputs. A series of multivariate statistical approaches including principal component analysis (PCA) were applied to extract significant characteristics contained in a large suite of water quality data (18 variables monthly recorded for 5 years); thereby to provide the important phenomenal information for establishing effective water resource management plans for the YS Reservoir. The PCA results identified the most important five principal components (PCs), explaining 71% of total variance of the original data set. The five PCs were interpreted as hydro-meteorological effect, nitrogen loading, phosphorus loading, primary production of phytoplankton, and fecal indicator bacteria (FIB) loading. Furthermore, hydro-meteorological effect and nitrogen loading could be characterized by a yearly periodicity whereas FIB loading showed an increasing trend with respect to time. The study results presented here might be useful to establish preliminary strategies for abating water quality degradation in the YS Reservoir.


Water Science and Technology | 2009

Evaluation of pollutants removal efficiency to achieve successful urban river restoration

Sung Min Cha; Young Sik Ham; Seo Jin Ki; Seung Won Lee; Kyung Hwa Cho; Yongeun Park; Joon Ha Kim

Greater efforts to provide alternative scenarios are key to successful urban stream restoration planning. In this study, we discuss two different aspects of water quality management schemes, biodegradation and human health, which are incorporated in the restoration project of original, pristine condition of urban stream at the Gwangju (GJ) Stream, Korea. For this study, monthly monitoring of biochemical oxygen demand (BOD(5)) and fecal indicator bacteria (FIB) data were obtained from 2003 to 2008 and for 2008, respectively, and these were evaluated to explore pollutant magnitude and variation with respect to space and time window. Ideal scenarios to reduce target pollutants were determined based on their seasonal characteristics and correlations between the concentrations at a water intake and discharge point, where we suggested an increase of environmental flow and wetland as pollutants reduction drawing for BOD(5) and FIB, respectively. The scenarios were separately examined by the Qual2E model and hypothetically (but planned) constructed wetland, respectively. The results revealed that while controlling of the water quality at the intake point guaranteed the lower pollution level of BOD(5) in the GJ Stream, a wetland constructed at the discharge point may be a promising strategy to mitigate mass loads of FIB. Overall, this study suggests that a combination of the two can be plausible scenarios not only to support sustainable urban water resources management, but to enhance a quality of urban stream restoration assignment.


Journal of Environmental Quality | 2016

Survival of Manure-borne and Fecal Coliforms in Soil: Temperature Dependence as Affected by Site-Specific Factors.

Yongeun Park; Yakov A. Pachepsky; Daniel R. Shelton; Jaehak Jeong; Gene Whelan

Understanding pathogenic and indicator bacteria survival in soils is essential for assessing the potential of microbial contamination of water and produce. The objective of this work was to evaluate the effects of soil properties, animal source, experimental conditions, and the application method on temperature dependencies of manure-borne generic , O157:H7, and fecal coliforms survival in soils. A literature search yielded 151 survival datasets from 70 publications. Either one-stage or two-stage kinetics was observed in the survival datasets. We used duration and rate of the logarithm of concentration change as parameters of the first stage in the two-stage kinetics data. The second stage of the two-stage kinetics and the one-stage kinetics were simulated with the model to find the dependence of the inactivation rate on temperature. Classification and regression trees and linear regressions were applied to parameterize the kinetics. Presence or absence of two-stage kinetics was controlled by temperature, soil texture, soil water content, and for fine-textured soils by setting experiments in the field or in the laboratory. The duration of the first stage was predominantly affected by soil water content and temperature. In the model dependencies of inactivation rates on temperature, parameter estimates were significantly affected by the laboratory versus field conditions and by the application method, whereas inactivation rates at 20°C were significantly affected by all survival and management factors. Results of this work can provide estimates of coliform survival parameters for models of microbial water quality.


Journal of Environmental Monitoring | 2010

Factors dominating stratification cycle and seasonal water quality variation in a Korean estuarine reservoir

Young Geun Lee; Joo-Hyon Kang; Seo Jin Ki; Sung Min Cha; Kyung Hwa Cho; Yun Seok Lee; Yongeun Park; Seung Won Lee; Joon Ha Kim

A comprehensive monitoring program was conducted during 2005-2007 to investigate seasonal variations of hydrologic stability and water quality in the Yeongsan Reservoir (YSR), located at the downstream end of the Yeongsan River, Korea. A principal component analysis (PCA) was performed to identify factors dominating the seasonal water quality variation from a large suite of measured data--11 physico-chemical parameters from 48 sampling sites. The results showed that three principal components explained approximately 62% of spatio-seasonal water quality variation, which are related to stratifications, pollutant loadings and resultant eutrophication, and the advective mixing process during the episodic rainfall-runoff events. A comparison was then made between YSR and an upstream freshwater reservoir (Damyang Reservoir, DYR) in the same river basin during an autumn season. It was found that the saline stratification and pollutant input from the upstream contributed to greater concentrations of nutrients and organic matter in YSR compared to DYR. In YSR, saline stratification in combination with thermal stratification was a dominant cause of the longer period (for two consecutive seasons) of hypoxic conditions at the reservoir bottom. The results presented here will help better understand the season- and geography-dependent characteristics of reservoir water quality in Asian Monsoon climate regions such as Korea.

Collaboration


Dive into the Yongeun Park's collaboration.

Top Co-Authors

Avatar

Kyung Hwa Cho

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Joon Ha Kim

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Sung Min Cha

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Seung Won Lee

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seo Jin Ki

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yakov A. Pachepsky

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Mayzonee Ligaray

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Dong Jin Jeon

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

JongCheol Pyo

Ulsan National Institute of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge