Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joo-Hyun Seo is active.

Publication


Featured researches published by Joo-Hyun Seo.


Bioorganic & Medicinal Chemistry Letters | 2009

Kojic acid-amino acid conjugates as tyrosinase inhibitors

Jin-Mi Noh; Seon-Yeong Kwak; Hyo-Suk Seo; Joo-Hyun Seo; Byung-Gee Kim; Yoon-Sik Lee

Kojic acid (KA), a well known tyrosinase inhibitor, has insufficient inhibitory activity and stability. We modified KA with amino acids and screened their tyrosinase inhibitory activity. Among them, kojic acid-phenylalanine amide (KA-F-NH(2)) showed the strongest inhibitory activity, which was maintained for over 3 months at 50 degrees C, and acted as a noncompetitive inhibitor as determined by kinetic analysis. It also exhibited dopachrome reducing activity. We also propose a new tyrosinase inhibition mechanism based on the docking simulation data.


Proteins | 2007

High accuracy template based modeling by global optimization.

Keehyoung Joo; Jinwoo Lee; Sunjoong Lee; Joo-Hyun Seo; Sung Jong Lee; Jooyoung Lee

For high‐accuracy template‐based‐modeling of CASP7 targets, we have applied a procedure based on the rigorous optimization of score functions at three stages: multiple alignment, chain building, and side‐chain modeling. We applied the conformational space annealing method to a newly developed consistency based score function for multiple alignment. For chain building, we optimized the MODELLER energy function. For side‐chain modeling, we optimized a SCWRL‐like energy function using a rotamer library constructed specifically for a given target sequence. By rigorous optimization, we have achieved significant improvement in backbone as well as side‐chain modeling for TBM and TBM/HA targets. For most TBM/HA targets (17/26), the predicted model was more accurate than the model one can construct from the best template in a posteriori fashion. It appears that the current method can extract relevant information out of multiple templates. Proteins 2007.


Applied and Environmental Microbiology | 2007

Cloning and characterization of a novel beta-transaminase from Mesorhizobium sp. strain LUK: a new biocatalyst for the synthesis of enantiomerically pure beta-amino acids.

Juhan Kim; Dohyun Kyung; Hyungdon Yun; Byung-Kwan Cho; Joo-Hyun Seo; Min-Ho Cha; Byung-Gee Kim

ABSTRACT A novel β-transaminase gene was cloned from Mesorhizobium sp. strain LUK. By using N-terminal sequence and an internal protein sequence, a digoxigenin-labeled probe was made for nonradioactive hybridization, and a 2.5-kb gene fragment was obtained by colony hybridization of a cosmid library. Through Southern blotting and sequence analysis of the selected cosmid clone, the structural gene of the enzyme (1,335 bp) was identified, which encodes a protein of 47,244 Da with a theoretical pI of 6.2. The deduced amino acid sequence of the β-transaminase showed the highest sequence similarity with glutamate-1-semialdehyde aminomutase of transaminase subgroup II. The β-transaminase showed higher activities toward d-β-aminocarboxylic acids such as 3-aminobutyric acid, 3-amino-5-methylhexanoic acid, and 3-amino-3-phenylpropionic acid. The β-transaminase has an unusually broad specificity for amino acceptors such as pyruvate and α-ketoglutarate/oxaloacetate. The enantioselectivity of the enzyme suggested that the recognition mode of β-aminocarboxylic acids in the active site is reversed relative to that of α-amino acids. After comparison of its primary structure with transaminase subgroup II enzymes, it was proposed that R43 interacts with the carboxylate group of the β-aminocarboxylic acids and the carboxylate group on the side chain of dicarboxylic α-keto acids such as α-ketoglutarate and oxaloacetate. R404 is another conserved residue, which interacts with the α-carboxylate group of the α-amino acids and α-keto acids. The β-transaminase was used for the asymmetric synthesis of enantiomerically pure β-aminocarboxylic acids. (3S)-Amino-3-phenylpropionic acid was produced from the ketocarboxylic acid ester substrate by coupled reaction with a lipase using 3-aminobutyric acid as amino donor.


Biotechnology and Bioengineering | 2011

Necessary and sufficient conditions for the asymmetric synthesis of chiral amines using ω‐aminotransferases

Joo-Hyun Seo; Dohyun Kyung; Keehyoung Joo; Joo-Young Lee; Byung-Gee Kim

The half reactions of ω‐aminotransferase (ω‐AT) from Vibrio fluvialis JS17 (ω‐ATVf) were carried out using purified pyridoxal 5′‐phosphate‐enzyme (PLP‐Enz) and pyridoxamine 5′‐phosphate‐enzyme (PMP‐Enz) complexes to investigate the relative activities of substrates. In the reaction generating PMP‐Enz from PLP‐Enz using L‐alanine as an amine donor, L‐alanine showed about 70% of the initial reaction rate of (S)‐α‐methylbenzylamine ((S)‐α‐MBA). However, in the subsequent half reaction recycling PLP‐Enz from PMP‐Enz using acetophenone as an amine acceptor, acetophenone showed nearly negligible reactivity compared to pyruvate. These results indicate that the main bottleneck in the asymmetric synthesis of (S)‐α‐MBA lies not in the amination of PLP by alanine, but in the amination of acetophenone by PMP‐Enz, where conformational restraints of the enzyme structure is likely to be the main reason for limiting the amine group transfer from PMP‐Enz to acetophenone. Based upon those half reaction experiments using the two amino acceptors of different activity, it appears that the relative activities of the two amine donors and the two acceptors involved in the ω‐AT reactions can roughly determine the asymmetric synthesis yield of the target chiral amine compound. Predicted conversion yields of several target chiral amines were calculated and compared with the experimental conversion yields. Approximately, a positive linear correlation (Pearsons correlation coefficient = 0.92) was observed between the calculated values and the experimental conversion yields. To overcome the low (S)‐α‐MBA productivity of ω‐ATVf caused by the possible disadvantageous structural constraints for acetophenone, new ω‐ATs showing higher affinity to benzene ring of acetophenone than ω‐ATVf were computationally screened using comparative modeling and protein‐ligand docking. ω‐ATs from Streptomyces avermitilis MA‐4680 (SAV2612) and Agrobacterium tumefaciens str. C58 (Atu4761) were selected, and the two screened ω‐ATs showed higher asymmetric synthesis reaction rate of (S)‐α‐MBA and lower (S)‐α‐MBA degradation reaction rate than ω‐ATVf. To verify the higher conversion yield of the variants of ω‐ATs, the reaction with 50 mM acetophenone and 50 mM alanine was performed with coupling of lactate dehydrogenase and two‐phase reaction system. SAV2612 and Atu4761 showed 70% and 59% enhanced yield in the synthesis of (S)‐α‐MBA compared to that of ω‐ATVf, respectively. Biotechnol. Bioeng. 2011;108: 253–263.


Proteins | 2009

All‐atom chain‐building by optimizing MODELLER energy function using conformational space annealing

Keehyoung Joo; Jinwoo Lee; Joo-Hyun Seo; Kyoungrim Lee; Byung-Gee Kim; Jooyoung Lee

We have investigated the effect of rigorous optimization of the MODELLER energy function for possible improvement in protein all‐atom chain‐building. For this we applied the global optimization method called conformational space annealing (CSA) to the standard MODELLER procedure to achieve better energy optimization than what MODELLER provides. The method, which we call MODELLERCSA, is tested on two benchmark sets. The first is the 298 proteins taken from the HOMSTRAD multiple alignment set. By simply optimizing the MODELLER energy function, we observe significant improvement in side‐chain modeling, where MODELLERCSA provides about 10.7% (14.5%) improvement for χ1 (χ1 + χ2) accuracy compared to the standard MODELLER modeling. The improvement of backbone accuracy by MODELLERCSA is shown to be less prominent, and a similar improvement can be achieved by simply generating many standard MODELLER models and selecting lowest energy models. However, the level of side‐chain modeling accuracy by MODELLERCSA could not be matched either by extensive MODELLER strategies, side‐chain remodeling by SCWRL3, or copying unmutated rotamers. The identical procedure was successfully applied to 100 CASP7 template base modeling domains during the prediction season in a blind fashion, and the results are included here for comparison. From this study, we observe a good correlation between the MODELLER energy and the side‐chain accuracy. Our findings indicate that, when a good alignment between a target protein and its templates is provided, thorough optimization of the MODELLER energy function leads to accurate all‐atom models. Proteins 2009.


Biotechnology and Bioengineering | 2009

Simultaneous synthesis of 2‐phenylethanol and L‐homophenylalanine using aromatic transaminase with yeast Ehrlich pathway

Joon-Young Hwang; Jihyang Park; Joo-Hyun Seo; Min-Ho Cha; Byung-Kwan Cho; Juhan Kim; Byung-Gee Kim

2‐Phenylethanol is a widely used aroma compound with rose‐like fragrance and L‐homophenylalanine is a building block of angiotensin‐converting enzyme (ACE) inhibitor. 2‐phenylethanol and L‐homophenylalanine were synthesized simultaneously with high yield from 2‐oxo‐4‐phenylbutyric acid and L‐phenylalanine, respectively. A recombinant Escherichia coli harboring a coupled reaction pathway comprising of aromatic transaminase, phenylpyruvate decarboxylase, carbonyl reductase, and glucose dehydrogenase (GDH) was constructed. In the coupled reaction pathway, the transaminase reaction was coupled with the Ehrlich pathway of yeast; (1) a phenylpyruvate decarboxylase (YDR380W) as the enzyme to generate the substrate for the carbonyl reductase from phenylpyruvate (i.e., byproduct of the transaminase reaction) and to shift the reaction equilibrium of the transaminase reaction, and (2) a carbonyl reductase (YGL157W) to produce the 2‐phenylethanol. Selecting the right carbonyl reductase showing the highest activity on phenylacetaldehyde with narrow substrate specificity was the key to success of the constructing the coupling reaction. In addition, NADPH regeneration was achieved by incorporating the GDH from Bacillus subtilis in the coupled reaction pathway. Based on 40 mM of L‐phenylalanine used, about 96% final product conversion yield of 2‐phenylethanol was achieved using the recombinant E. coli. Biotechnol. Bioeng. 2009;102: 1323–1329.


Applied and Environmental Microbiology | 2010

Cloning-Independent Expression and Analysis of ω-Transaminases by Use of a Cell-Free Protein Synthesis System

Yong-Chan Kwon; Kyung-Ho Lee; Ho-Cheol Kim; Kyuboem Han; Joo-Hyun Seo; Byung-Gee Kim; Dong-Myung Kim

ABSTRACT Herewith we report the expression and screening of microbial enzymes without involving cloning procedures. Computationally predicted putative ω-transaminase (ω-TA) genes were PCR amplified from the bacterial colonies and expressed in a cell-free protein synthesis system for subsequent analysis of their enzymatic activity and substrate specificity. Through the cell-free expression analysis of the putative ω-TA genes, a number of enzyme-substrate pairs were identified in a matter of hours. We expect that the proposed strategy will provide a universal platform for bridging the information gap between nucleotide sequence and protein function to accelerate the discovery of novel enzymes.


Scientific Reports | 2016

Engineering of Baeyer-Villiger monooxygenase-based Escherichia coli biocatalyst for large scale biotransformation of ricinoleic acid into (Z)-11-(heptanoyloxy)undec-9-enoic acid

Joo-Hyun Seo; Hwan-Hee Kim; Eun-Yeong Jeon; Young-Ha Song; Chul-Soo Shin; Jin-Byung Park

Baeyer-Villiger monooxygenases (BVMOs) are able to catalyze regiospecific Baeyer-Villiger oxygenation of a variety of cyclic and linear ketones to generate the corresponding lactones and esters, respectively. However, the enzymes are usually difficult to express in a functional form in microbial cells and are rather unstable under process conditions hindering their large-scale applications. Thereby, we investigated engineering of the BVMO from Pseudomonas putida KT2440 and the gene expression system to improve its activity and stability for large-scale biotransformation of ricinoleic acid (1) into the ester (i.e., (Z)-11-(heptanoyloxy)undec-9-enoic acid) (3), which can be hydrolyzed into 11-hydroxyundec-9-enoic acid (5) (i.e., a precursor of polyamide-11) and n-heptanoic acid (4). The polyionic tag-based fusion engineering of the BVMO and the use of a synthetic promoter for constitutive enzyme expression allowed the recombinant Escherichia coli expressing the BVMO and the secondary alcohol dehydrogenase of Micrococcus luteus to produce the ester (3) to 85 mM (26.6 g/L) within 5 h. The 5 L scale biotransformation process was then successfully scaled up to a 70 L bioreactor; 3 was produced to over 70 mM (21.9 g/L) in the culture medium 6 h after biotransformation. This study demonstrated that the BVMO-based whole-cell reactions can be applied for large-scale biotransformations.


Applied and Environmental Microbiology | 2012

Identification and Characterization of the Rhizobium sp. Strain GIN611 Glycoside Oxidoreductase Resulting in the Deglycosylation of Ginsenosides

Eun-Mi Kim; Juhan Kim; Joo-Hyun Seo; Jun-Seong Park; Duck-Hee Kim; Byung-Gee Kim

ABSTRACT Using enrichment culture, Rhizobium sp. strain GIN611 was isolated as having activity for deglycosylation of a ginsenoside, compound K (CK). The purified heterodimeric protein complex from Rhizobium sp. GIN611 consisted of two subunits with molecular masses of 63.5 kDa and 17.5 kDa. In the genome, the coding sequence for the small subunit was located right after the sequence for the large subunit, with one nucleotide overlapping. The large subunit showed CK oxidation activity, and the deglycosylation of compound K was performed via oxidation of ginsenoside glucose by glycoside oxidoreductase. Coexpression of the small subunit helped soluble expression of the large subunit in recombinant Escherichia coli. The purified large subunit also showed oxidation activity against other ginsenoside compounds, such as Rb1, Rb2, Rb3, Rc, F2, CK, Rh2, Re, F1, and the isoflavone daidzin, but at a much lower rate. When oxidized CK was extracted and incubated in phosphate buffer with or without enzyme, (S)-protopanaxadiol [PPD(S)] was detected in both cases, which suggests that deglycosylation of oxidized glucose is spontaneous.


Biotechnology and Bioprocess Engineering | 2006

Asymmetric synthesis of unnaturall-amino acids using thermophilic aromaticl-amino acid transaminase

Byung-Kwan Cho; Joo-Hyun Seo; Juhan Kim; Chang-Soo Lee; Byung-Gee Kim

Aromaticl-amino acid transaminase is an enzyme that is able to transfer the amino group froml-glutamate to unnatural aromatic α-keto acids to generate α-ketoglutarate and unnatural aromaticl-amino acids, respectively. Enrichment culture was used to isolate thermophilicBacillus sp. T30 expressing this enzyme for use in the synthesis of unnaturall-amino acids. The asymmetric syntheses ofl-homophenylalanine andl-phenylglycine resulted in conversion yields of >95% and >93% from 150 mM 2-oxo-4-phenylbutyrate and phenylglyoxylate, respectively, usingl-glutamate as an amino donor at 60°C. Synthesizedl-homophenylalanine andl-phenylglycine were optically pure (>99% enantiomeric excess) and continuously pre-cipitated in the reaction solution due to their low solubility at the given reaction pH. While the solubility of the α-keto acid substrates is dependent on temperature, the solubility of the unnaturall-amino acid products is dependent on the reaction pH. As the solubility difference between substrate and product at the given reaction pH is therefore larger at higher temperature, the thermophilic transaminase was successfully used to shift the reaction equilibrium toward rapid product formation.

Collaboration


Dive into the Joo-Hyun Seo's collaboration.

Top Co-Authors

Avatar

Byung-Gee Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Juhan Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Eun-Mi Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyung-Yeon Park

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Keehyoung Joo

Korea Institute for Advanced Study

View shared research outputs
Top Co-Authors

Avatar

Min-Ho Cha

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Jooyoung Lee

Korea Institute for Advanced Study

View shared research outputs
Top Co-Authors

Avatar

Su-Hyun Seo

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge