Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joohee Kim is active.

Publication


Featured researches published by Joohee Kim.


Advanced Materials | 2015

Highly Transparent and Stretchable Field‐Effect Transistor Sensors Using Graphene–Nanowire Hybrid Nanostructures

Joohee Kim; Mi-Sun Lee; Sangbin Jeon; Minji Kim; Sungwon Kim; Kukjoo Kim; Franklin Bien; Sung You Hong; Jang-Ung Park

Transparent and stretchable electronics with remarkable bendability, conformability, and lightness are the key attributes for sensing or wearable devices. Transparent and stretchable field-effect transistor sensors using graphene-metal nanowire hybrid nanostructures have high mobility (≈3000 cm(2) V(-1) s(-1) ) with low contact resistance, and they are transferrable onto a variety of substrates. The integration of these sensors for RLC circuits enables wireless monitoring.


Nature Communications | 2017

Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics

Joohee Kim; Minji Kim; Mi-Sun Lee; Kukjoo Kim; Sangyoon Ji; Yun-Tae Kim; Jihun Park; Kyungmin Na; Kwi-Hyun Bae; Hong Kyun Kim; Franklin Bien; Chang Young Lee; Jang-Ung Park

Wearable contact lenses which can monitor physiological parameters have attracted substantial interests due to the capability of direct detection of biomarkers contained in body fluids. However, previously reported contact lens sensors can only monitor a single analyte at a time. Furthermore, such ocular contact lenses generally obstruct the field of vision of the subject. Here, we developed a multifunctional contact lens sensor that alleviates some of these limitations since it was developed on an actual ocular contact lens. It was also designed to monitor glucose within tears, as well as intraocular pressure using the resistance and capacitance of the electronic device. Furthermore, in-vivo and in-vitro tests using a live rabbit and bovine eyeball demonstrated its reliable operation. Our developed contact lens sensor can measure the glucose level in tear fluid and intraocular pressure simultaneously but yet independently based on different electrical responses.


Nano Letters | 2014

In-situ Synthesis of Carbon Nanotube–Graphite Electronic Devices and Their Integrations onto Surfaces of Live Plants and Insects

Kyongsoo Lee; Jihun Park; Mi-Sun Lee; Joohee Kim; Byung Gwan Hyun; Dong Jun Kang; Kyungmin Na; Chang Young Lee; Franklin Bien; Jang-Ung Park

Here we report an unconventional approach for the single-step synthesis of monolithically integrated electronic devices based on multidimensional carbon structures. Integrated arrays of field-effect transistors and sensors composed of carbon nanotube channels and graphitic electrodes and interconnects were formed directly from the synthesis. These fully integrated, all-carbon devices are highly flexible and can be transferred onto both planar and nonplanar substrates, including papers, clothes, and fingernails. Furthermore, the sensor network can be interfaced with inherent life forms in nature for monitoring environmental conditions. Examples of significant applications are the integration of the devices to live plants or insects for real-time, wireless sensing of toxic gases.


Nature Communications | 2017

Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges

Sung-Ho Shin; Sangyoon Ji; Seiho Choi; Kyoung-Hee Pyo; Byeong Wan An; Jihun Park; Joohee Kim; Ju-Young Kim; Ki-Suk Lee; Soon-Yong Kwon; Jaeyeong Heo; Byong-Guk Park; Jang-Ung Park

Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ∼3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics.


Nanoscale Research Letters | 2015

Studies on the mechanical stretchability of transparent conductive film based on graphene-metal nanowire structures

Mi-Sun Lee; Joohee Kim; Jihun Park; Jang-Ung Park

Transparent electrodes with superior flexibility and stretchability as well as good electrical and optical properties are required for applications in wearable electronics with comfort designs and high performances. Here, we present hybrid nanostructures as stretchable and transparent electrodes based on graphene and networks of metal nanowires, and investigate their optical, electrical, and mechanical properties. High electrical and optical characteristics, superb bendability (folded in half), excellent stretchability (10,000 times in stretching cycles with 100% in tensile strain toward a uniaxial direction and 30% in tensile strain toward a multi-axial direction), strong robustness against electrical breakdown and thermal oxidation were obtained through comprehensive study. We believe that these results suggest a substantial promise application in future electronics.


Polymers | 2017

Smart Sensor Systems for Wearable Electronic Devices

Byeong Wan An; Jung Hwal Shin; So-Yun Kim; Joohee Kim; Sangyoon Ji; Jihun Park; Youngjin Lee; Jiuk Jang; Young-Geun Park; Eunjin Cho; Subin Jo; Jang-Ung Park

Wearable human interaction devices are technologies with various applications for improving human comfort, convenience and security and for monitoring health conditions. Healthcare monitoring includes caring for the welfare of every person, which includes early diagnosis of diseases, real-time monitoring of the effects of treatment, therapy, and the general monitoring of the conditions of people’s health. As a result, wearable electronic devices are receiving greater attention because of their facile interaction with the human body, such as monitoring heart rate, wrist pulse, motion, blood pressure, intraocular pressure, and other health-related conditions. In this paper, various smart sensors and wireless systems are reviewed, the current state of research related to such systems is reported, and their detection mechanisms are compared. Our focus was limited to wearable and attachable sensors. Section 1 presents the various smart sensors. In Section 2, we describe multiplexed sensors that can monitor several physiological signals simultaneously. Section 3 provides a discussion about short-range wireless systems including bluetooth, near field communication (NFC), and resonance antenna systems for wearable electronic devices.


Nutrition Research and Practice | 2010

Effects of corn gluten hydrolyzates, branched chain amino acids, and leucine on body weight reduction in obese rats induced by a high fat diet.

Ha Yoon Bong; Ji Yeon Kim; Hye In Jeong; Min Sun Moon; Joohee Kim; Oran Kwon

In this study, we compared corn gluten hydrolyzates, BCAAs, and leucine for their effects on body weight reduction in high fat-induced obese rats in order to determine the major active components in the corn gluten hydrolyzates. After obesity was induced for 13 weeks with high fat diet, the overweight-induced SD rats (n = 64) were stratified according to body weight, randomly blocked into eight treatments, and raised for 8 weeks. Four groups were changed to a normal diet and the other groups remained on the high fat diet. Each of the groups within both diets was fed either casein, corn gluten hydrolyzates, leucine, or branched chain amino acids, respectively. Daily food intake, body weight gain, and food efficiency ratio were significantly lower in the corn gluten hydrolyzate groups compared to the other groups, regardless of the high fat diet or normal fat diet. The rats fed the corn gluten hydrolyzates diet had the lowest perirenal fat pad weights whereas muscle weight was significantly increased in the corn gluten hydrolyzates groups. Plasma triglyceride, hepatic total lipid, and total cholesterol contents were significantly reduced in the corn gluten hydrolyzates groups. Other lipid profile measurements were not significantly changed. Plasma triglyceride and hepatic total lipid were also significantly reduced in the BCAA and leucine groups. Leptin levels were significantly lower and adiponectin was significantly higher in the corn gluten hydrolyzates groups. Fasting blood glucose, insulin, C-peptide, and HOMA-IR levels were also significantly reduced in the corn gluten hydrozylates groups, regardless of fat level.


Science Advances | 2018

Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays

Jihun Park; Joohee Kim; So-Yun Kim; Woon Hyung Cheong; Jiuk Jang; Young-Geun Park; Kyungmin Na; Yun-Tae Kim; Jun Hyuk Heo; Chang Young Lee; Jung Heon Lee; Franklin Bien; Jang-Ung Park

This study presents a soft, smart contact lens that provides real-time sensing for diabetes through a wireless display. Recent advances in wearable electronics combined with wireless communications are essential to the realization of medical applications through health monitoring technologies. For example, a smart contact lens, which is capable of monitoring the physiological information of the eye and tear fluid, could provide real-time, noninvasive medical diagnostics. However, previous reports concerning the smart contact lens have indicated that opaque and brittle components have been used to enable the operation of the electronic device, and this could block the user’s vision and potentially damage the eye. In addition, the use of expensive and bulky equipment to measure signals from the contact lens sensors could interfere with the user’s external activities. Thus, we report an unconventional approach for the fabrication of a soft, smart contact lens in which glucose sensors, wireless power transfer circuits, and display pixels to visualize sensing signals in real time are fully integrated using transparent and stretchable nanostructures. The integration of this display into the smart lens eliminates the need for additional, bulky measurement equipment. This soft, smart contact lens can be transparent, providing a clear view by matching the refractive indices of its locally patterned areas. The resulting soft, smart contact lens provides real-time, wireless operation, and there are in vivo tests to monitor the glucose concentration in tears (suitable for determining the fasting glucose level in the tears of diabetic patients) and, simultaneously, to provide sensing results through the contact lens display.


Nutrition Research and Practice | 2009

Effect of corn gluten and its hydrolysate consumptions on weight reduction in rats fed a high-fat diet.

Joohee Kim; Juyeon Park; Soyoung Hong; Mi Kyung Kim

This study examined the effects of corn gluten (CG) and its hydrolysate consumptions on weight reduction in rats fed a high-fat diet. Eight-month-old male Sprague-Dawley rats (n=40) were fed a high-fat diet (40% calorie as fat) for 4 weeks. They were then randomly divided into four groups and fed the isocaloric diets with different protein sources for 8 weeks. The protein sources were casein (control group), intact CG (CG group), CG hydrolysate A (CGHA group, 30% of protein as peptides and 70% as free amino acids) and CG hydrolysate P (CGHP group, 93% of protein as peptides and 7% as free amino acids). Body weight gain, adipose tissue weights, nitrogen balance, absorptions of energy, protein and fat, lipid profiles in plasma, liver and feces and hepatic activities of carnitine palmitoyl transferase (CPT), fatty acid synthase (FAS), malic enzyme (ME) and glucose-6-phosphate dehydrogenase (G6PDH) were assessed. The CGHA diet had the highest amount of BCAAs, especially leucine, and most of them existed as free amino acid forms. The CGHA group showed significant weight reduction and negative nitrogen balance. Protein absorption and apparent protein digestibility in the CGHA group were significantly lower than those in other groups. Adipose tissue weights were the lowest in the CGHA group. Activity of CPT tended to be higher in the CGHA group than in other groups and those of FAS, ME and G6PDH were significantly lower in the CGHA group than in other groups. In conclusion, the CGHA diet which had relatively high amounts of free amino acids and BCAAs, especially leucine, had a weight reduction effect by lowering adipose tissue weight and the activities of FAS, ME and G6PDH in experimental animals, but it seemed to be a negative result induced by lowering protein absorption, increasing urinary nitrogen excretion and protein catabolism.


Angewandte Chemie | 2017

An Annulative Synthetic Strategy for Building Triphenylene Frameworks by Multiple C−H Bond Activations

Bijoy P. Mathew; Hyun Ji Yang; Joohee Kim; Jae Bin Lee; Yun-Tae Kim; Sungmin Lee; Chang Young Lee; Wonyoung Choe; Kyungjae Myung; Jang-Ung Park; Sung You Hong

C-H activation is a versatile tool for appending aryl groups to aromatic systems. However, heavy demands on multiple catalytic cycle operations and site-selectivity have limited its use for graphene segment synthesis. A Pd-catal- yzed one-step synthesis of functionalized triphenylene frameworks is disclosed, which proceeds by 2- or 4-fold C-H arylation of unactivated benzene derivatives. A Pd2 (dibenzylideneacetone)3 catalytic system, using cyclic diaryliodonium salts as π-extending agents, leads to site-selective inter- and intramolecular tandem arylation sequences. Moreover, N-substituted triphenylenes are applied to a field-effect transistor sensor for rapid, sensitive, and reversible alcohol vapor detection.

Collaboration


Dive into the Joohee Kim's collaboration.

Top Co-Authors

Avatar

Oran Kwon

Ewha Womans University

View shared research outputs
Top Co-Authors

Avatar

Jang-Ung Park

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ji Yeon Kim

Seoul National University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jihun Park

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

So-Yun Kim

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Franklin Bien

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jiuk Jang

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Kyung Eun Lee

Chungbuk National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge