Joohyun Ryu
University of Minnesota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joohyun Ryu.
Biochemical Journal | 2012
Jung Il Chae; Dong Wook Kim; Nayeon Lee; Young Joo Jeon; Iksoo Jeon; Jihye Kwon; Jumi Kim; Yunjo Soh; Dong Seok Lee; Kang Seok Seo; Nag Jin Choi; Byoung Chul Park; Sung Hyun Kang; Joohyun Ryu; Seung Hun Oh; Dong Ah Shin; Dong Ryul Lee; Jeong Tae Do; In-Hyun Park; George Q. Daley; Jihwan Song
HD (Huntingtons disease) is a devastating neurodegenerative genetic disorder caused by abnormal expansion of CAG repeats in the HTT (huntingtin) gene. We have recently established two iPSC (induced pluripotent stem cell) lines derived from a HD patient carrying 72 CAG repeats (HD-iPSC). In order to understand the proteomic profiles of HD-iPSCs, we have performed comparative proteomic analysis among normal hESCs (human embryonic stem cells; H9), iPSCs (551-8) and HD-iPSCs at undifferentiated stages, and identified 26 up- and down-regulated proteins. Interestingly, these differentially expressed proteins are known to be involved in different biological processes, such as oxidative stress, programmed cell death and cellular oxygen-associated proteins. Among them, we found that oxidative stress-related proteins, such as SOD1 (superoxide dismutase 1) and Prx (peroxiredoxin) families are particularly affected in HD-iPSCs, implying that HD-iPSCs are highly susceptible to oxidative stress. We also found that BTF3 (basic transcription factor 3) is up-regulated in HD-iPSCs, which leads to the induction of ATM (ataxia telangiectasia mutated), followed by activation of the p53-mediated apoptotic pathway. In addition, we observed that the expression of cytoskeleton-associated proteins was significantly reduced in HD-iPSCs, implying that neuronal differentiation was also affected. Taken together, these results demonstrate that HD-iPSCs can provide a unique cellular disease model system to understand the pathogenesis and neurodegeneration mechanisms in HD, and the identified proteins from the present study may serve as potential targets for developing future HD therapeutics.
Biochemical and Biophysical Research Communications | 2010
Joohyun Ryu; Sayeon Cho; Byoung Chul Park; Do Hee Lee
Although the polyglutamine protein ataxin-1 is modified by SUMO at multiple sites, the functions of such modification or how it is regulated are still unknown. Here we report that SUMO-1 or Ubc9 over-expression stimulated the aggregation of ataxin-1 and that oxidative stress, such as hydrogen peroxide treatment, further enhanced SUMO conjugation and aggregation of ataxin-1. Accordingly, co-treatment with antioxidant N-acetyl-cysteine attenuated the effect of oxidative stress. Ataxin-1, which can activate c-Jun N-terminal kinase (JNK) pathway by itself, strongly associated with apoptosis signal-regulating kinase 1 (ASK1) while not interacting with JNK. Finally, treatment of JNK-specific inhibitor caused a reduction in the oxidant-enhanced SUMOylation and aggregation of ataxin-1. Together these results indicate that SUMO modification of ataxin-1 promotes the aggregation of ataxin-1 and that oxidative stress and JNK pathway play roles in this process.
Biochemical and Biophysical Research Communications | 2009
Hansoo Kim; Jinsun Choi; Joohyun Ryu; Sung Goo Park; Sayeon Cho; Byoung Chul Park; Do Hee Lee
Recent evidence suggests that autophagy plays a role in oxidative injury-induced cell death. Here we examined whether glutamate-mediated oxidative toxicity induces autophagy in murine hippocampal HT22 cells and if autophagy induction affects the molecular events associated with cell death. Markers for autophagy induction including LC3 conversion, suppression of mTOR pathway, and GFP-LC3 dot formation were enhanced by glutamate treatment. By contrast, autophagy inhibition blocked glutamate-induced LC3 conversion and consequently reduced cell death. Activation of ERK1/2, a hallmark of glutamate-induced cytotoxicity, was also decreased by autophagy inhibition. Interestingly, autophagy inhibition also affected the expression of chaperones including Hsp60 and Hsp70, which are differentially regulated during HT22 cell death. Conversely, knock-down of Hsp60 greatly decreased LC3 conversion. Together these results suggest that glutamate-induced cytotoxicity involves autophagic cell death and chaperones may play a role in this process.
International Journal of Molecular Medicine | 2011
Joohyun Ryu; Sung Goo Park; Byoung Chul Park; Misun Choe; Kyu Suk Lee; Jae We Cho
Psoriasis is a chronic inflammatory skin disease, characterized by a combination of abnormal proliferation of keratinocytes, immunology and vascular proliferation. Proteomic analyses have revealed some clues regarding the pathogenesis of psoriasis. In the present study, we conducted an investigation of different proteomes of psoriatic lesional skin, and compared them with those of normal and non-lesional psoriatic skin. We performed 2-D gel electrophoresis, liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis and database searches. Expression of proteins were evaluated by immunoblot and immunohistochemistry analyses. Our data showed differential expression of 74 and 145 protein spots in non-lesional and lesional psoriatic skin, respectively. Eleven of 36 proteins, which were identified by LC-MS/MS, were categorized as apoptosis-regulating proteins. Other protein spots were categorized as proteins with involvement in the negative regulation of apoptosis, defense response-related proteins and inflammatory response. Of particular interest, increased expression of glutathione S transferase 1 (GSTP1) and peroxiredoxin 2 (PRDX2), which are involved in the Redox balance system, and SFN, which is involved in the cellular proliferation system, was observed in psoriatic lesional skin. Localization of GSTP1 and SFN was observed above the middle layer of the epidermis in psoriatic skin lesions. Expression of PRDX2 was clearly observed below the middle layer of the epidermis in chronic type psoriatic skin lesions. Taken together, 36 identified proteins were associated with biological regulation, including regulation of cell death, defense response, inflammatory response and reactive oxygen species (ROS) regulation. PRDX2 and GSTP1 may play roles in compensating mechanisms for reduction of ROS stress, and SFN may play roles in prevention of cancer development in proliferating cells through G2/M cell cycle arrest upon accidental DNA damage within psoriatic skin lesions.
Oncogene | 2015
Naomi Oi; J Yuan; Margarita Malakhova; Kuntian Luo; Y. Li; Joohyun Ryu; L Zhang; Ann M. Bode; Z Xu; Zhenkun Lou; Ziming Dong
Resveratrol (trans-3,5,4′-truhydroxystilbene) possesses a strong anticancer activity exhibited as the induction of apoptosis through p53 activation. However, the molecular mechanism and direct target(s) of resveratrol-induced p53 activation remain elusive. Here, the Ras-GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) was identified as a potential target of resveratrol, and in vitro binding assay results using resveratrol-conjugated Sepharose 4B beads confirmed their direct binding. Depletion of G3BP1 significantly diminishes resveratrol-induced p53 expression and apoptosis. We also found that G3BP1 negatively regulates p53 expression by interacting with ubiquitin-specific protease 10 (USP10), a deubiquitinating enzyme of p53. Disruption of the interaction of p53 with USP10 by G3BP1 interference leads to the suppression of p53 deubiquitination. Resveratrol, on the other hand, directly binds to G3BP1 and prevents the G3BP1/USP10 interaction, resulting in enhanced USP10-mediated deubiquitination of p53, and consequently increased p53 expression. These findings disclose a novel mechanism of resveratrol-induced p53 activation and resveratrol-induced apoptosis by direct targeting of G3BP1.
Proteome Science | 2011
Jung-Il Chae; Jumi Kim; Seong Goo Lee; Young-Joo Jeon; Dong Wook Kim; Yunjo Soh; Kang S Seo; Hak Kyo Lee; Nag-Jin Choi; Joohyun Ryu; Sunghyun Kang; Seong-Keun Cho; Dong-Seok Lee; Hyung Min Chung; and Deog-Bon Koo
Many important molecular events associated with implantation and development occur within the female reproductive tract, especially within the uterus endometrium, during pregnancy periods. The endometrium includes the mucosal lining of the uterus, which provides a suitable site for implantation and development of a fertilized egg and fetus. To date, the molecular cascades in the uterus endometrium during pregnancy periods in pigs have not been elucidated fully. In this study, we compared the functional regulated proteins in the endometrium during pregnancy periods with those in non-pregnant conditions and investigated changes in expression patterns during pregnancy (days 40, 70, and 93) using two-dimensional gel electrophoresis (2-DE) and western blotting. The functional regulated proteins were identified and discovered from differentially expressed proteins in the uterus endometrium during pregnancy. We discovered 820 protein spots in a proteomic analysis of uterus endometrium tissues with 2-DE gels. We identified 63 of the 98 proteins regulated differentially among non-pregnant and pregnant tissues (matched and unmatched spots). Interestingly, 10 of these 63 proteins are development-, cytoskeleton- and chaperon-related proteins such as transferrin, protein DJ-1, transgelin, galectin-1, septin 2, stathmin 1, cofilin 1, fascin 1, heat shock protein (HSP) 90β and HSP 27. The specific expression patterns of these proteins in the endometrium during pregnancy were confirmed by western blotting. Our results suggest that the expressions of these genes involved in endometrium function and endometrium development from early to late gestation are associated with the regulation of endometrium development for maintaining pregnancy.
Cell Death and Disease | 2016
Hong-Sub Lee; Joohyun Ryu; Yunjin Jung; Kyung-Hoon Lee; D I Kim; Ho Jae Han
Oxygen signaling is critical for stem cell regulation, and oxidative stress-induced stem cell apoptosis decreases the efficiency of stem cell therapy. Hypoxia activates O-linked β-N-acetyl glucosaminylation (O-GlcNAcylation) of stem cells, which contributes to regulation of cellular metabolism, as well as cell fate. Our study investigated the role of O-GlcNAcylation via glucosamine in the protection of hypoxia-induced apoptosis of mouse embryonic stem cells (mESCs). Hypoxia increased mESCs apoptosis in a time-dependent manner. Moreover, hypoxia also slightly increased the O-GlcNAc level. Glucosamine treatment further enhanced the O-GlcNAc level and prevented hypoxia-induced mESC apoptosis, which was suppressed by O-GlcNAc transferase inhibitors. In addition, hypoxia regulated several lipid metabolic enzymes, whereas glucosamine increased expression of glycerol-3-phosphate acyltransferase-1 (GPAT1), a lipid metabolic enzyme producing lysophosphatidic acid (LPA). In addition, glucosamine-increased O-GlcNAcylation of Sp1, which subsequently leads to Sp1 nuclear translocation and GPAT1 expression. Silencing of GPAT1 by gpat1 siRNA transfection reduced glucosamine-mediated anti-apoptosis in mESCs and reduced mammalian target of rapamycin (mTOR) phosphorylation. Indeed, LPA prevented mESCs from undergoing hypoxia-induced apoptosis and increased phosphorylation of mTOR and its substrates (S6K1 and 4EBP1). Moreover, mTOR inactivation by rapamycin (mTOR inhibitor) increased pro-apoptotic proteins expressions and mESC apoptosis. Furthermore, transplantation of non-targeting siRNA and glucosamine-treated mESCs increased cell survival and inhibited flap necrosis in mouse skin flap model. Conversely, silencing of GPAT1 expression reversed those glucosamine effects. In conclusion, enhancing O-GlcNAcylation of Sp1 by glucosamine stimulates GPAT1 expression, which leads to inhibition of hypoxia-induced mESC apoptosis via mTOR activation.
Experimental and Molecular Medicine | 2010
Joohyun Ryu; Se Ryeon Lee; Sung Goo Park; Sunghyun Kang; Hyeoung Joon Kim; Byoung Chul Park
Successful hematopoietic stem cell transplantation (HSCT) involves the restoration of hematopoietic function after engraftment, arising from the differentiation and proliferation of hematopoietic stem cells. Several factors could influence the course of allogeneic-HSCT (allo-HSCT). Therefore, knowledge of serum proteome changes during the allo-HSCT period might increase the efficacy of diagnosis and disease prevention efforts. This study conducted proteomic analyses to find proteins that were significantly altered in response to allo-HSCT. Sera from five representative patients who underwent allo-HSCT were analyzed by 2-dimensional gel electrophoresis and liquid chromatography tandem mass spectrometry, and were measured on a weekly basis before and after allo-HSCT in additional 78 patients. Fourteen protein spots showing changes in expression were further examined, and most proteins were identified as acute phase proteins (APPs). Studies of 78 additional patients confirmed that C-reactive protein (CRP) and haptoglobin undergo expression changes during allo-HSCT and thus may have the potential to serve as representative markers of clinical events after allo-HSCT. Maximal CRP level affected the development of major transplant-related complications (MTCs) and other problems such as fever of unknown origin. Particularly, an increase in CRP level 21 days after allo-HSCT was found to be an independent risk factor for MTC. Maximal haptoglobin and haptoglobin level 14 days after allo-HSCT were predictive of relapses in underlying hematologic disease. Our results indicated that CRP and haptoglobin were significantly expressed during allo-HSCT, and suggest that their level can be monitored after allo-HSCT to assess the risks of early transplant-related complications and relapse.
Biochemical and Biophysical Research Communications | 2013
Joohyun Ryu; Sung Goo Park; Phil Young Lee; Sayeon Cho; Do Hee Lee; Gwang Hoon Kim; Jeong-Hoon Kim; Byoung Chul Park
Anterior Gradient 2 (AGR2), an ER stress-inducible protein, has been reported to be localized in endoplasmic reticulum (ER) and its level is elevated in numerous metastatic cancers. Recently, it has been demonstrated that AGR2 is involved in the control of ER homeostasis. However, the molecular mechanism how AGR2 regulates ER stress response remains unclear. Herein we show that AGR2 homo-dimerizes through an intermolecular disulfide bond. Moreover, dimerization of AGR2 attenuates ER stress-induced cell death through the association with BiP/GRP78. Thus, these results suggest that dimerization of AGR2 is crucial in mediating the ER stress signaling pathway.
Oncotarget | 2015
Yi Zhang; Ke Yao; Chengcheng Shi; Yanan Jiang; Kangdong Liu; Song Zhao; Hanyong Chen; Kanamata Reddy; Chengjuan Zhang; Xiaoyu Chang; Joohyun Ryu; Ann M. Bode; Ziming Dong; Zigang Dong
The epidermal growth factor receptor (EGFR) is known to play a critical role in non-small cell lung cancer(NSCLC). Several EGFR tyrosine kinase inhibitors(TKIs), such as gefitinib, have been used as effective clinical therapies for patients with NSCLC. Unfortunately, acquired resistance to gefitinib commonly occurs after 6–12 months of treatment. The resistance is associated with the appearance of the L858R/T790M double mutation of the EGFR. In our present study, we discovered a compound,referred to as 244-MPT, which could suppress either gefitinib-sensitive or -resistant lung cancer cell growth and colony formation, and also suppressed the kinase activity of both wildtype and double mutant (L858R/T790M) EGFR. The underlying mechanism reveals that 244-MPT could interact with either the wildtype or double-mutant EGFR in an ATP-competitive manner and inhibit activity. Treatment with 244-MPT could substantially reduce the phosphorylation of EGFR and its downstream signaling pathways, including Akt and ERK1/2 in gefitinib-sensitive and -resistant cell lines. It was equally effective in suppressing EGFR phosphorylation and downstream signaling in NL20 cells transfected with wildtype, single-mutant (L858R) or mutant (L858R/T790M) EGFR. 244-MPT could also induce apoptosis in a gefitinib-resistant cell line and strongly suppress gefitinib-resistant NSCLC tumor growth in a xenograft mouse model. In addition, 244-MPT could effectively reduce the size of tumors in a gefitinib-resistant NSCLC patient-derived xenograft (PDX) SCID mouse model. Overall, 244-MPT could overcome gefitinib-resistance by directly targeting the EGFR.
Collaboration
Dive into the Joohyun Ryu's collaboration.
Korea Research Institute of Bioscience and Biotechnology
View shared research outputs