Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joomi Ahn is active.

Publication


Featured researches published by Joomi Ahn.


Journal of Chromatography B | 2010

Separation of 2-aminobenzamide labeled glycans using hydrophilic interaction chromatography columns packed with 1.7 μm sorbent

Joomi Ahn; Jonathan Bones; Ying Qing Yu; Pauline M. Rudd; Martin Gilar

Separation by hydrophilic interaction chromatography (HILIC) with fluorescence detection utilizing a sub-2 microm glycan column for the separation of 2-aminobenzamide (2-AB) labeled N-linked glycans is described. The HILIC column packed with a 1.7 microm amide sorbent improves the peak capacity compared to a 3.0 microm HILIC column by a similar degree as observed in reversed-phase ultra-performance liquid chromatography (RP-UPLC). The results indicated that the optimal peak capacity was achieved at flow rate 0.2-0.5 mL/min. HILIC method transfer guidelines were shown to further enhance the resolution of glycans by changing initial gradient conditions, flow rate, column temperature, and different column lengths. Additionally, excellent resolution can be achieved in the separation of 2-AB labeled glycans released from fetuin, RNase B, and human IgG with a rapid analysis time.


mAbs | 2010

Rapid comparison of a candidate biosimilar to an innovator monoclonal antibody with advanced liquid chromatography and mass spectrometry technologies

Hongwei Xie; Asish B. Chakraborty; Joomi Ahn; Ying Qing Yu; Deepalakshmi P. Dakshinamoorthy; Martin Gilar; Weibin Chen; St. John Skilton; Jeffery R. Mazzeo

This study shows that state-of-the-art liquid chromatography (LC) and mass spectrometry (MS) can be used for rapid verification of identity and characterization of sequence variants and posttranslational modifications (PTMs) for antibody products. A candidate biosimilar IgG1 monoclonal antibody (mAb) was compared in detail to a commercially available innovator product. Intact protein mass, primary sequence, PTMs, and the micro-differences between the two mAbs were identified and quantified simultaneously. Although very similar in terms of sequences and modifications, a mass difference observed by LC-MS intact mass measurements indicated that they were not identical. Peptide mapping, performed with data independent acquisition LC-MS using an alternating low and elevated collision energy scan mode (LC-MSE), located the mass difference between the biosimilar and the innovator to a two amino acid residue variance in the heavy chain sequences. The peptide mapping technique was also used to comprehensively catalogue and compare the differences in PTMs of the biosimilar and innovator mAbs. Comprehensive glycosylation profiling confirmed that the proportion of individual glycans was different between the biosimilar and the innovator, although the number and identity of glycans were the same. These results demonstrate that the combination of accurate intact mass measurement, released glycan profiling, and LC-MSE peptide mapping provides a set of routine tools that can be used to comprehensively compare a candidate biosimilar and an innovator mAb.


Analytical Biochemistry | 2011

Characterization of glycoprotein digests with hydrophilic interaction chromatography and mass spectrometry

Martin Gilar; Ying-Qing Yu; Joomi Ahn; Hongwei Xie; Huanhuan Han; Wantao Ying; Xiaohong Qian

A new hydrophilic interaction chromatography (HILIC) column packed with amide 1.7 μm sorbent was applied to the characterization of glycoprotein digests. Due to the impact of the hydrophilic carbohydrate moiety, glycopeptides were more strongly retained on the column and separated from the remaining nonglycosylated peptides present in the digest. The glycoforms of the same parent peptide were also chromatographically resolved and analyzed using ultraviolet and mass spectrometry detectors. The HILIC method was applied to glyco-profiling of a therapeutic monoclonal antibody and proteins with several N-linked and O-linked glycosylation sites. For characterization of complex proteins with multiple glycosylation sites we utilized 2D LC, where RP separation dimension was used for isolation of glycopeptides and HILIC for resolution of peptide glycoforms. The analysis of site-specific glycan microheterogeneity was illustrated for the CD44 fusion protein.


Journal of Chromatography A | 2008

Mixed-mode chromatography for fractionation of peptides, phosphopeptides, and sialylated glycopeptides

Martin Gilar; Ying-Qing Yu; Joomi Ahn; Jennifer Fournier; John C. Gebler

A mixed-mode chromatographic (MMC) sorbent was prepared by functionalizing the silica sorbent with a pentafluorophenyl (PFP) ligand. The resulting stationary phase provided a reversed-phase (RP) retention mode along with a relatively mild strong cation-exchange (SCX) retention interaction. While the mechanism of interaction is not entirely clear, it is believed that the silanols in the vicinity of the perfluorinated ligand act as strongly acidic sites. The 2.1 mm x 150 mm column packed with such sorbent was applied to the separation of peptides. Linear RP gradients in combination with salt steps were used for pseudo two-dimensional (2D) separation and fractionation of tryptic peptides. An alternative approach of using linear cation-exchange gradients combined with RP step gradients was also investigated. Besides the attractive forces, the ionic repulsion contributed to the retention mechanism. The analytes with strong negatively charged sites (phosphorylated peptides, sialylated glycopeptides) eluted in significantly different patterns than generic tryptic peptides. This retention mechanism was employed for the isolation of phosphopeptides or sialylated glycopeptides from non-functionalized peptide mixtures. The mixed-mode column was utilized in conjunction with a phosphopeptide enrichment solid phase extraction (SPE) device packed with metal oxide affinity chromatography (MOAC) sorbent. The combination of MOAC and mixed-mode chromatography (MMC) provided for an enhanced extraction selectivity of phosphopeptides and sialylated glycopeptides peptides from complex samples, such as yeast and human serum tryptic digests.


Biochimica et Biophysica Acta | 2013

Accessing the reproducibility and specificity of pepsin and other aspartic proteases.

Joomi Ahn; Min-Jie Cao; Ying Qing Yu; John R. Engen

The aspartic protease pepsin is less specific than other endoproteinases. Because aspartic proteases like pepsin are active at low pH, they are utilized in hydrogen deuterium exchange mass spectrometry (HDX MS) experiments for digestion under hydrogen exchange quench conditions. We investigated the reproducibility, both qualitatively and quantitatively, of online and offline pepsin digestion to understand the compliment of reproducible pepsin fragments that can be expected during a typical pepsin digestion. The collection of reproducible peptides was identified from >30 replicate digestions of the same protein and it was found that the number of reproducible peptides produced during pepsin digestion becomes constant above 5-6 replicate digestions. We also investigated a new aspartic protease from the stomach of the rice field eel (Monopterus albus Zuiew) and compared digestion efficiency and specificity to porcine pepsin and aspergillopepsin. Unique cleavage specificity was found for rice field eel pepsin at arginine, asparagine, and glycine. Different peptides produced by the various proteases can enhance protein sequence coverage and improve the spatial resolution of HDX MS data. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.


Journal of the American Society for Mass Spectrometry | 2012

Using Hydrogen/Deuterium Exchange Mass Spectrometry to Study Conformational Changes in Granulocyte Colony Stimulating Factor upon PEGylation

Hui Wei; Joomi Ahn; Ying Qing Yu; Adrienne A. Tymiak; John R. Engen; Guodong Chen

PEGylation is the covalent attachment of polyethylene glycol to proteins, and it can be used to alter immunogenicity, circulating half life and other properties of therapeutic proteins. To determine the impact of PEGylation on protein conformation, we applied hydrogen/deuterium exchange mass spectrometry (HDX MS) to analyze granulocyte colony stimulating factor (G-CSF) upon PEGylation as a model system. The combined use of HDX automation technology and data analysis software allowed reproducible and robust measurements of the deuterium incorporation levels for peptic peptides of both PEGylated and non-PEGylated G-CSF. The results indicated that significant differences in deuterium incorporation were induced by PEGylation of G-CSF, although the overall changes observed were quite small. PEGylation did not result in gross conformational rearrangement of G-CSF. The data complexity often encountered in HDX MS measurements was greatly reduced through a data processing and presentation format designed to facilitate the comparison process. This study demonstrates the practical utility of HDX MS for comparability studies, process monitoring, and protein therapeutic characterization in the biopharmaceutical industry.


Analytical Chemistry | 2012

Pepsin immobilized on high-strength hybrid particles for continuous flow online digestion at 10,000 psi.

Joomi Ahn; Moon Chul Jung; Kevin Wyndham; Ying Qing Yu; John R. Engen

Pepsin was immobilized on ethyl-bridged hybrid (BEH) particles, and digestion performance was evaluated in a completely online format, with the specific intent of using the particles for hydrogen-deuterium exchange mass spectrometry (HDX MS) experiments. Because the BEH particles are mechanically strong, they could withstand prolonged, continuous high-pressure at 10,000 psi. Online digestion was performed under isobaric conditions with continuous solvent flow, in contrast to other approaches where the pressure or flow is cycled. As expected, digestion efficiency at 10,000 psi was increased and reproducibly produced more peptic peptides versus digestion at 1000 psi. Prototype columns made with the BEH pepsin particles exhibited robust performance, and deuterium back-exchange was similar to that of other immobilized pepsin particles. These particles can be easily incorporated in existing HDX MS workflows to provide more peptide coverage in experiments where fast, efficient, and reproducible online pepsin digestion is desired.


Biochimica et Biophysica Acta | 2013

Analysis of the local dynamics of human insulin and a rapid-acting insulin analog by hydrogen/deuterium exchange mass spectrometry.

Shiori Nakazawa; Joomi Ahn; Noritaka Hashii; Kenji Hirose; Nana Kawasaki

Human insulin and insulin lispro (lispro), a rapid-acting insulin analog, have identical primary structures, except for the transposition of a pair of amino acids. This mutation results in alterations in their higher order structures, with lispro dissociating more easily than human insulin. In our previous study performed using hydrogen/deuterium exchange mass spectrometry (HDX/MS), differences were observed in the rates and levels of deuteration among insulin analog products, which were found to be related to their self-association stability. In this study, we carried out peptide mapping of deuterated human insulin and lispro to determine the regions responsible for these deuteration differences and to elucidate the type of structural changes that affect their HDX reactivity. We identified A3-6 and B22-24 as the 2 regions that showed distinct differences in the number of deuterium atoms incorporated between human insulin and lispro. These regions contain residues that are thought to participate in hexamerization and dimerization, respectively. We also determined that over time, the differences in deuteration levels decreased in A3-6, whereas they increased in B22-24, suggesting a difference in the dynamics between these 2 regions. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.


Journal of the American Society for Mass Spectrometry | 2014

The Influence of Adnectin Binding on the Extracellular Domain of Epidermal Growth Factor Receptor

Roxana E. Iacob; Guodong Chen; Joomi Ahn; Stephane Houel; Hui Wei; Jingjie Mo; Li Tao; Daniel Cohen; Dianlin Xie; Zheng Lin; Paul E. Morin; Michael L. Doyle; Adrienne A. Tymiak; John R. Engen

The precise and unambiguous elucidation and characterization of interactions between a high affinity recognition entity and its cognate protein provides important insights for the design and development of drugs with optimized properties and efficacy. In oncology, one important target protein has been shown to be the epidermal growth factor receptor (EGFR) through the development of therapeutic anticancer antibodies that are selective inhibitors of EGFR activity. More recently, smaller protein derived from the 10th type III domain of human fibronectin termed an adnectin has also been shown to inhibit EGFR in clinical studies. The mechanism of EGFR inhibition by either an adnectin or an antibody results from specific binding of the high affinity protein to the extracellular portion of EGFR (exEGFR) in a manner that prevents phosphorylation of the intracellular kinase domain of the receptor and thereby blocks intracellular signaling. Here, the structural changes induced upon binding were studied by probing the solution conformations of full length exEGFR alone and bound to a cognate adnectin through hydrogen/deuterium exchange mass spectrometry (HDX MS). The effects of binding in solution were identified and compared with the structure of a bound complex determined by X-ray crystallography.ᅟ


Archive | 2012

IMMOBILIZED ENZYMATIC REACTOR

Joomi Ahn; Moon Chul Jung; Kevin Wyndham

Collaboration


Dive into the Joomi Ahn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hui Wei

Bristol-Myers Squibb

View shared research outputs
Top Co-Authors

Avatar

Moon Chul Jung

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge