Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adrienne A. Tymiak is active.

Publication


Featured researches published by Adrienne A. Tymiak.


Toxicology and Applied Pharmacology | 2003

Contemporary issues in toxicology - The role of metabonomics in toxicology and its evaluation by the COMET project

John C. Lindon; Jeremy K. Nicholson; Elaine Holmes; Henrik Antti; Mary E. Bollard; Hector C. Keun; Olaf Beckonert; Timothy M. D. Ebbels; Michael D. Reily; Donald G. Robertson; Gregory J. Stevens; Peter Luke; Alan P. Breau; Glenn H. Cantor; Roy H. Bible; Urs Niederhauser; Hans Senn; Goetz Schlotterbeck; Ulla G. Sidelmann; Steen Møller Laursen; Adrienne A. Tymiak; Bruce D. Car; Lois D. Lehman-McKeeman; Jean-Marie Colet; Ali Loukaci; Craig E. Thomas

The role that metabonomics has in the evaluation of xenobiotic toxicity studies is presented here together with a brief summary of published studies. To provide a comprehensive assessment of this approach, the Consortium for Metabonomic Toxicology (COMET) has been formed between six pharmaceutical companies and Imperial College of Science, Technology and Medicine (IC), London, UK. The objective of this group is to define methodologies and to apply metabonomic data generated using (1)H NMR spectroscopy of urine and blood serum for preclinical toxicological screening of candidate drugs. This is being achieved by generating databases of results for a wide range of model toxins which serve as the raw material for computer-based expert systems for toxicity prediction. The project progress on the generation of comprehensive metabonomic databases and multivariate statistical models for prediction of toxicity, initially for liver and kidney toxicity in the rat and mouse, is reported. Additionally, both the analytical and biological variation which might arise through the use of metabonomics has been evaluated. An evaluation of intersite NMR analytical reproducibility has revealed a high degree of robustness. Second, a detailed comparison has been made of the ability of the six companies to provide consistent urine and serum samples using a study of the toxicity of hydrazine at two doses in the male rat, this study showing a high degree of consistency between samples from the various companies in terms of spectral patterns and biochemical composition. Differences between samples from the various companies were small compared to the biochemical effects of the toxin. A metabonomic model has been constructed for urine from control rats, enabling identification of outlier samples and the metabolic reasons for the deviation. Building on this success, and with the completion of studies on approximately 80 model toxins, first expert systems for prediction of liver and kidney toxicity have been generated.


Drug Discovery Today | 2005

Enantioselective chromatography in drug discovery

Yingru Zhang; Dauh-Rurng Wu; David Wang-Iverson; Adrienne A. Tymiak

Molecular chirality is a fundamental consideration in drug discovery, one necessary to understand and describe biological targets as well as to design effective pharmaceutical agents. Enantioselective chromatography has played an increasing role not only as an analytical tool for chiral analyses, but also as a preparative technique to obtain pure enantiomers from racemates quickly from a wide diversity of chemical structures. Different enantioselective chromatography techniques are reviewed here, with particular emphasis on the most widespread high performance liquid chromatography (HPLC) and the rapidly emerging supercritical fluid chromatography (SFC) techniques. This review focuses on the dramatic advances in the chiral stationary phases (CSPs) that have made HPLC and SFC indispensable techniques for drug discovery today. In addition, screening strategies for rapid method development and considerations for laboratory-scale preparative separation are discussed and recent achievements are highlighted.


Drug Discovery Today | 2014

Hydrogen/deuterium exchange mass spectrometry for probing higher order structure of protein therapeutics: methodology and applications.

Hui Wei; Jingjie Mo; Li Tao; Reb Russell; Adrienne A. Tymiak; Guodong Chen; Roxana E. Iacob; John R. Engen

The higher order structure of protein therapeutics can be interrogated with hydrogen/deuterium exchange mass spectrometry (HDX-MS). HDX-MS is now a widely used tool in the structural characterization of protein therapeutics. In this review, HDX-MS based workflows designed for protein therapeutic discovery and development processes are presented, focusing on the specific applications of epitope mapping for protein/drug interactions and biopharmaceutical comparability studies. Future trends in the application of HDX-MS in protein therapeutics characterization are also described.


Bioanalysis | 2012

Pellet digestion: a simple and efficient sample preparation technique for LC–MS/MS quantification of large therapeutic proteins in plasma

Zheng Ouyang; Michael T. Furlong; Steven Wu; Bogdan Sleczka; James Tamura; Haiqing Wang; Suzanne J. Suchard; Anish Suri; Timothy Olah; Adrienne A. Tymiak; Mohammed Jemal

BACKGROUND There is a need for a simple and efficient sample preparation technique for LC-MS/MS quantification of large therapeutic proteins in plasma. RESULTS The sample preparation technique presented here is based upon trypsin digestion of the pellet obtained following precipitation of the protein analyte from plasma. The pellet digestion technique was shown to facilitate efficient digestion of large therapeutic proteins, with concomitant removal of a substantial amount of potentially problematic plasma phospholipids. The technique was successfully applied to a pharmacokinetic study of a large therapeutic protein. CONCLUSION This simple sample preparation approach will be beneficial to bioanalytical laboratories engaged in the LC-MS/MS quantification of large therapeutic proteins in biological matrices.


Drug Discovery Today | 2011

Characterization of protein therapeutics by mass spectrometry: recent developments and future directions.

Guodong Chen; Bethanne M. Warrack; Angela Goodenough; Hui Wei; David Wang-Iverson; Adrienne A. Tymiak

Mass spectrometry (MS) has become a powerful technology in the discovery and development of protein therapeutics in the biopharmaceutical industry. This review article describes recent developments and future trends in the characterization of protein therapeutics using MS. We discuss top-down MS for the characterization of protein modifications, hydrogen/deuterium exchange MS and ion mobility MS methods for higher order protein structure studies. Quantitative analysis of protein therapeutics (in vivo) by MS as an orthogonal approach to immunoassay for pharmacokinetics studies will also be illustrated.


Journal of the American Society for Mass Spectrometry | 2012

Using Hydrogen/Deuterium Exchange Mass Spectrometry to Study Conformational Changes in Granulocyte Colony Stimulating Factor upon PEGylation

Hui Wei; Joomi Ahn; Ying Qing Yu; Adrienne A. Tymiak; John R. Engen; Guodong Chen

PEGylation is the covalent attachment of polyethylene glycol to proteins, and it can be used to alter immunogenicity, circulating half life and other properties of therapeutic proteins. To determine the impact of PEGylation on protein conformation, we applied hydrogen/deuterium exchange mass spectrometry (HDX MS) to analyze granulocyte colony stimulating factor (G-CSF) upon PEGylation as a model system. The combined use of HDX automation technology and data analysis software allowed reproducible and robust measurements of the deuterium incorporation levels for peptic peptides of both PEGylated and non-PEGylated G-CSF. The results indicated that significant differences in deuterium incorporation were induced by PEGylation of G-CSF, although the overall changes observed were quite small. PEGylation did not result in gross conformational rearrangement of G-CSF. The data complexity often encountered in HDX MS measurements was greatly reduced through a data processing and presentation format designed to facilitate the comparison process. This study demonstrates the practical utility of HDX MS for comparability studies, process monitoring, and protein therapeutic characterization in the biopharmaceutical industry.


Journal of the American Society for Mass Spectrometry | 2014

Fast Photochemical Oxidation of Proteins (FPOP) Maps the Epitope of EGFR Binding to Adnectin

Yuetian Yan; Guodong Chen; Hui Wei; Richard Y.-C. Huang; Jingjie Mo; Don L. Rempel; Adrienne A. Tymiak; Michael L. Gross

AbstractEpitope mapping is an important tool for the development of monoclonal antibodies, mAbs, as therapeutic drugs. Recently, a class of therapeutic mAb alternatives, adnectins, has been developed as targeted biologics. They are derived from the 10th type III domain of human fibronectin (10Fn3). A common approach to map the epitope binding of these therapeutic proteins to their binding partners is X-ray crystallography. Although the crystal structure is known for Adnectin 1 binding to human epidermal growth factor receptor (EGFR), we seek to determine complementary binding in solution and to test the efficacy of footprinting for this purpose. As a relatively new tool in structural biology and complementary to X-ray crystallography, protein footprinting coupled with mass spectrometry is promising for protein–protein interaction studies. We report here the use of fast photochemical oxidation of proteins (FPOP) coupled with MS to map the epitope of EGFR-Adnectin 1 at both the peptide and amino-acid residue levels. The data correlate well with the previously determined epitopes from the crystal structure and are consistent with HDX MS data, which are presented in an accompanying paper. The FPOP-determined binding interface involves various amino-acid and peptide regions near the N terminus of EGFR. The outcome adds credibility to oxidative labeling by FPOP for epitope mapping and motivates more applications in the therapeutic protein area as a stand-alone method or in conjunction with X-ray crystallography, NMR, site-directed mutagenesis, and other orthogonal methods. Figureᅟ


Bioanalysis | 2012

Quantitation of therapeutic proteins following direct trypsin digestion of dried blood spot samples and detection by LC–MS-based bioanalytical methods in drug discovery

Bogdan Sleczka; Celia D’Arienzo; Adrienne A. Tymiak; Timothy Olah

BACKGROUND There is considerable interest in the pharmaceutical industry today in both development of therapeutic proteins as viable biopharmaceutical agents as well as the implementation of microsampling techniques, such as dried blood spots (DBS), as an alternative to current sample collection and handling procedures for biological samples generated in drug discovery and development studies. We have demonstrated that these two techniques can be integrated by developing bioanalytical methods that simultaneously determine the concentrations of unique therapeutic protein constructs, using LC-MS-based detection of multiple surrogate peptides following direct trypsin digestion of DBS. RESULTS Bioanalytical methods were developed for the simultaneous determination of two structurally different therapeutic proteins (PEGylated-Adnectin™-1, MW 11,144 amu and an Fc-fusion protein, MW 67,082 amu) in a single DBS sample using LC-MS-based detection of multiple peptides generated from different regions of the proteins following trypsin digestion. The same methodology was applied to the analysis of DBS samples collected following dosing of a third unique protein (PEGylated-Adnectin-2) to mice. Although these initial DBS methods were slightly less sensitive than those developed specifically for each individual protein in plasma or serum, the generic digestion procedure yielded sufficient accuracy, precision and an extended linear dynamic range to justify their further evaluation in pharmacokinetic, pharmacodynamic and toxicological studies of selected therapeutic proteins following dosing in preclinical discovery studies. Additionally, DBS samples may offer a convenient, generic platform approach for direct enzymatic digestion and sample preparation for LC-MS-based quantitation of proteins. DBS samples prepared for two of the therapeutic proteins were also stable for at least 2 weeks when stored at room temperature. CONCLUSION Although the same clarification and interpretation of DBS results will be required (e.g., blood vs plasma levels, hematocrit effects on DBS determinations and red blood cell partitioning) as for small-molecules, there still remains the potential to further develop and expand this strategy with appropriate proteins of interest. While additional studies will be required to validate this approach in specific applications, we have demonstrated the feasibility of using DBS sampling to directly quantify structurally different types of therapeutic proteins in blood in discovery studies and present the potential to simultaneously measure other proteins, such as biomarkers, to augment and integrate data generated from in vivo studies.


Analytical Chemistry | 2011

Approach to evaluating dried blood spot sample stability during drying process and discovery of a treated card to maintain analyte stability by rapid on-card pH modification.

Guowen Liu; Qin C Ji; Mohammed Jemal; Adrienne A. Tymiak; Mark E. Arnold

Unstable drug candidates often lead to complexity for both sample collection and bioanalysis. Dried blood spot (DBS) technology is believed to be a viable solution to address this problem. However, it is currently a challenge to evaluate compound stability on DBS due to its solid format. The observed compound loss on a DBS card could be degradation and/or incomplete recovery. Therefore, a reliable bioanalytical method which can differentiate recovery loss from degradation is necessary for such stability evaluation. In this paper, the stability of an unstable drug candidate (KAI-9803) in human blood was evaluated using DBS. A reliable approach to evaluating analyte stability on DBS was developed with an appropriate time-zero sample, a consistent DBS sample processing method, and a suitable positive control. Commercially available DBS cards were evaluated, and it was found that KAI-9803 degraded during the drying process. An in-house modified DBS card was developed and demonstrated to be able to stabilize KAI-9803 during the drying process by rapidly lowering the pH of the spotted blood sample. The storage stability of KAI-9803 in human blood on this new card has been established for at least 48 days at room temperature. This in-house modified DBS card could provide a generic approach for other compounds which require stabilization at a low pH.


Journal of the American Society for Mass Spectrometry | 2010

A tris (2-carboxyethyl) phosphine (TCEP) related cleavage on cysteine-containing proteins

Peiran Liu; Brian W. O’Mara; Bethanne M. Warrack; Wei Wu; Yunping Huang; Yihong Zhang; Rulin Zhao; Mei Lin; Michael S. Ackerman; Peter K. Hocknell; Guodong Chen; Li Tao; Siegfried Rieble; Jack Wang; David Wang-Iverson; Adrienne A. Tymiak; Michael J. Grace; Reb Russell

Introduced in the late 1980s as a reducing reagent, Tris (2-carboxyethyl) phosphine (TCEP) has now become one of the most widely used protein reductants. To date, only a few studies on its side reactions have been published. We report the observation of a side reaction that cleaves protein backbones under mild conditions by fracturing the cysteine residues, thus generating heterogeneous peptides containing different moieties from the fractured cysteine. The peptide products were analyzed by high performance liquid chromatography and tandem mass spectrometry (LC/MS/MS). Peptides with a primary amine and a carboxylic acid as termini were observed, and others were found to contain amidated or formamidated carboxy termini, or formylated or glyoxylic amino termini. Formamidation of the carboxy terminus and the formation of glyoxylic amino terminus were unexpected reactions since both involve breaking of carbon—carbon bonds in cysteine.

Collaboration


Dive into the Adrienne A. Tymiak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hui Wei

Bristol-Myers Squibb

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Tao

Bristol-Myers Squibb

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge