Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joon Young Chang is active.

Publication


Featured researches published by Joon Young Chang.


Journal of Cell Biology | 2017

Growth differentiation factor 15 is a myomitokine governing systemic energy homeostasis

Hyo Kyun Chung; Dongryeol Ryu; Koon Soon Kim; Joon Young Chang; Yong Kyung Kim; Hyon Seung Yi; Seul Gi Kang; Min Jeong Choi; Seong Eun Lee; Saet Byel Jung; Min Jeong Ryu; Soung Jung Kim; Gi Ryang Kweon; Hail Kim; Jung Hwan Hwang; Chul Ho Lee; Se-Jin Lee; Christopher E. Wall; Michael Downes; Ronald M. Evans; Johan Auwerx; Minho Shong

Reduced mitochondrial electron transport chain activity promotes longevity and improves energy homeostasis via cell-autonomous and –non-autonomous factors in multiple model systems. This mitohormetic effect is thought to involve the mitochondrial unfolded protein response (UPRmt), an adaptive stress-response pathway activated by mitochondrial proteotoxic stress. Using mice with skeletal muscle–specific deficiency of Crif1 (muscle-specific knockout [MKO]), an integral protein of the large mitoribosomal subunit (39S), we identified growth differentiation factor 15 (GDF15) as a UPRmt-associated cell–non-autonomous myomitokine that regulates systemic energy homeostasis. MKO mice were protected against obesity and sensitized to insulin, an effect associated with elevated GDF15 secretion after UPRmt activation. In ob/ob mice, administration of recombinant GDF15 decreased body weight and improved insulin sensitivity, which was attributed to elevated oxidative metabolism and lipid mobilization in the liver, muscle, and adipose tissue. Thus, GDF15 is a potent mitohormetic signal that safeguards against the onset of obesity and insulin resistance.


Liver International | 2015

The indole derivative NecroX‐7 improves nonalcoholic steatohepatitis in ob/ob mice through suppression of mitochondrial ROS/RNS and inflammation

Hyo Kyun Chung; Yong Kyung Kim; Ji-Hoon Park; Min Jeong Ryu; Joon Young Chang; Jung Hwan Hwang; Chul-Ho Lee; Soon-Ha Kim; Hyun Jin Kim; Gi Ryang Kweon; Koon Soon Kim; Minho Shong

Nonalcoholic steatohepatitis (NASH) is associated with cirrhosis and hepatocellular carcinoma. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play key roles in the development of the disease. However, the therapeutic target of NASH has not been fully defined and new treatments are needed. We investigated the protective effects of the antioxidant indole‐derived NecroX‐7 in a NASH mouse model using leptin‐deficient ob/ob and methionine‐ and choline‐deficient (MCD) diet‐fed ob/ob mice.


Carcinogenesis | 2015

Dysregulation of Parkin-mediated mitophagy in thyroid Hürthle cell tumors.

J. Lee; Sujin Ham; Min Hee Lee; Soung Jung Kim; Ji Hoon Park; Seong Eun Lee; Joon Young Chang; Kyong Hye Joung; Tae Yong Kim; Jin-Man Kim; Hae Joung Sul; Gi Ryang Kweon; Young Suk Jo; Koon Soon Kim; Young Kee Shong; Giuseppe Gasparre; Jongkyeong Chung; Anna Maria Porcelli; Minho Shong

Abnormal accumulation of defective mitochondria is the hallmark of oncocytes, which are frequently observed in thyroid Hürthle cell lesions. Autophagy is an essential cellular catabolic mechanism for the degradation of dysfunctional organelles and has been implicated in several human diseases. It is yet unknown how autophagic turnover of defective mitochondria in Hürthle cell tumors is regulated. We characterized the expression patterns of molecular markers including Beclin1, LC3, PINK1 and Parkin, which are required for autophagy or mitophagy, in human oncocytic lesions of the thyroid. To undertake mechanistic studies, we investigated autophagy and mitophagy using XTC.UC1 cells, the only in vitro model of Hürthle cell tumors. Beclin1 and LC3 were highly expressed in oncocytes of Hürthle cell tumors. XTC.UC1 showed autophagic responses to starvation and rapamycin treatment, whereas they displayed ineffective activation of mitophagy, which is triggered by the coordinated action of PINK1 and Parkin in response to CCCP. This resulted in a decreased turnover of abnormal mitochondria. The mechanisms underlying defective mitophagy and mitochondrial turnover were investigated by genetic analysis of the PARK2 gene in XTC.UC1 and Hürthle cell tumor tissues. XTC.UC1 and several tumors harbored the V380L mutation, resulting in dysfunctional autoubiquitination and decreased E3 ligase activity. Consistently, oncocytes in Hürthle cell tumors displayed comparable expression of PINK1 but decreased Parkin expression in comparison to normal thyrocytes. The introduction of wild-type Parkin sensitized XTC.UC1 to death induced by CCCP. This study provides a possible etiological basis for oncocytic formation in heterogeneous Hürthle cell tumors through insufficient mitophagy leading to ineffective turnover of aberrant mitochondria caused by dysfunctional Parkin-mediated pathways of mitochondria quality control.


Endocrinology | 2015

Thyroid Dysfunction Associated With Follicular Cell Steatosis in Obese Male Mice and Humans

Min Hee Lee; Jung Uee Lee; Kyong Hye Joung; Yong Kyung Kim; Min Jeong Ryu; Seong Eun Lee; Soung Jung Kim; Hyo Kyun Chung; Min Jeong Choi; Joon Young Chang; Sang-Hee Lee; Gi Ryang Kweon; Hyun Jin Kim; Koon Soon Kim; Seong-Min Kim; Young Suk Jo; Jeongwon Park; Sheue-yann Cheng; Minho Shong

Adult thyroid dysfunction is a common endocrine disorder associated with an increased risk of cardiovascular disease and mortality. A recent epidemiologic study revealed a link between obesity and increased prevalence of hypothyroidism. It is conceivable that excessive adiposity in obesity might lead to expansion of the interfollicular adipose (IFA) depot or steatosis in thyroid follicular cells (thyroid steatosis, TS). In this study, we investigated the morphological and functional changes in thyroid glands of obese humans and animal models, diet-induced obese (DIO), ob/ob, and db/db mice. Expanded IFA depot and TS were observed in obese patients. Furthermore, DIO mice showed increased expression of lipogenesis-regulation genes, such as sterol regulatory element binding protein 1 (SREBP-1), peroxisome proliferator-activated receptor γ (PPARγ), acetyl coenzyme A carboxylase (ACC), and fatty acid synthetase (FASN) in the thyroid gland. Steatosis and ultrastructural changes, including distension of the endoplasmic reticulum (ER) and mitochondrial distortion in thyroid follicular cells, were uniformly observed in DIO mice and genetically obese mouse models, ob/ob and db/db mice. Obese mice displayed a variable degree of primary thyroid hypofunction, which was not corrected by PPARγ agonist administration. We propose that systemically increased adiposity is associated with characteristic IFA depots and TS and may cause or influence the development of primary thyroid failure.


Biochimica et Biophysica Acta | 2017

Dysregulation of mitophagy in carcinogenesis and tumor progression

Joon Young Chang; Hyon-Seung Yi; Hyeon-Woo Kim; Minho Shong

The mitochondrial role in carcinogenesis and cancer progression is an area of active research, with many unresolved questions. Various aspects of altered mitochondrial function have been implicated in tumorigenesis and tumor progression, including mitochondrial dysfunction, a metabolic switch to aerobic glycolysis, and dysregulation of mitophagy. Mitophagy is a highly specific quality control process which eliminates dysfunctional mitochondria and promotes mitochondrial turnover, and is involved in the adaptation to nutrient stress by controlling mitochondrial mass. The dysregulation of mitochondrial turnover has both a positive and negative role in cancer. This review will begin with a basic overview of the molecular mechanisms of mitophagy, and highlight recent trends in mitophagy from cancer studies. We will conclude this review by discussing areas of research in normal mitophagy that have yet to be explored in the context of cancer such as mitochondrial proteases, the mitochondrial unfolded protein response, and mitokine action. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.


Oncotarget | 2016

Defective ciliogenesis in thyroid hürthle cell tumors is associated with increased autophagy

J. Lee; Shinae Yi; Yea Eun Kang; Joon Young Chang; Jung Tae Kim; Hae Joung Sul; Jong Ok Kim; Jin-Man Kim; Joon Kim; Anna Maria Porcelli; Koon Soon Kim; Minho Shong

Primary cilia are found in the apical membrane of thyrocytes, where they may play a role in the maintenance of follicular homeostasis. In this study, we examined the distribution of primary cilia in the human thyroid cancer to address the involvement of abnormal ciliogenesis in different thyroid cancers. We examined 92 human thyroid tissues, including nodular hyperplasia, Hashimotos thyroiditis, follicular tumor, Hürthle cell tumor, and papillary carcinoma to observe the distribution of primary cilia. The distribution and length of primary cilia facing the follicular lumen were uniform across variable-sized follicles in the normal thyroid gland. However, most Hürthle cells found in benign and malignant thyroid diseases were devoid of primary cilia. Conventional variant of papillary carcinoma (PTC) displayed longer primary cilia than those of healthy tissue, whereas both the frequency and length of primary cilia were decreased in oncocytic variant of PTC. In addition, ciliogenesis was markedly defective in primary Hürthle cell tumors, including Hürthle cell adenomas and carcinomas, which showed higher level of autophagosome biogenesis. Remarkably, inhibition of autophagosome formation by Atg5 silencing or treatment with pharmacological inhibitors of autophagosome formation restored ciliogenesis in the Hürthle cell carcinoma cell line XTC.UC1 which exhibits a high basal autophagic flux. Moreover, the inhibition of autophagy promoted the accumulation of two factors critical for ciliogenesis, IFT88 and ARL13B. These results suggest that abnormal ciliogenesis, a common feature of Hürthle cells in diseased thyroid glands, is associated with increased basal autophagy.


Endocrinology and Metabolism | 2015

Mitochondrial Energy Metabolism and Thyroid Cancers

J. Lee; Joon Young Chang; Yea Eun Kang; Shinae Yi; Min Hee Lee; Kyong Hye Joung; Kun Soon Kim; Minho Shong

Primary thyroid cancers including papillary, follicular, poorly differentiated, and anaplastic carcinomas show substantial differences in biological and clinical behaviors. Even in the same pathological type, there is wide variability in the clinical course of disease progression. The molecular carcinogenesis of thyroid cancer has advanced tremendously in the last decade. However, specific inhibition of oncogenic pathways did not provide a significant survival benefit in advanced progressive thyroid cancer that is resistant to radioactive iodine therapy. Accumulating evidence clearly shows that cellular energy metabolism, which is controlled by oncogenes and other tumor-related factors, is a critical factor determining the clinical phenotypes of cancer. However, the role and nature of energy metabolism in thyroid cancer remain unclear. In this article, we discuss the role of cellular energy metabolism, particularly mitochondrial energy metabolism, in thyroid cancer. Determining the molecular nature of metabolic remodeling in thyroid cancer may provide new biomarkers and therapeutic targets that may be useful in the management of refractory thyroid cancers.


Journal of Endocrinology | 2017

ANGPTL6 expression is coupled with mitochondrial OXPHOS function to regulate adipose FGF21

Seul Gi Kang; Hyon Seung Yi; Min Jeong Choi; Min Jeong Ryu; Saet-Byel Jung; Hyo Kyun Chung; Joon Young Chang; Yong Kyung Kim; Seong Eun Lee; Hyeon Woo Kim; Hoil Choi; Dong Seok Kim; Ju Hee Lee; Koon Soon Kim; Hyun Jin Kim; Chul Ho Lee; Yuichi Oike; Minho Shong

Recent studies revealed that the inhibition of mitochondrial oxidative phosphorylation (OXPHOS) is coupled with the mitochondrial unfolded protein response, thereby stimulating the secretion of non-cell autonomous factors, which may control systemic energy metabolism and longevity. However, the nature and roles of non-cell autonomous factors induced in adipose tissue in response to reduced OXPHOS function remain to be clarified in mammals. CR6-interacting factor 1 (CRIF1) is an essential mitoribosomal protein for the intramitochondrial production of mtDNA-encoded OXPHOS subunits. Deficiency of CRIF1 impairs the proper formation of the OXPHOS complex, resulting in reduced function. To determine which secretory factors are induced in response to reduced mitochondrial OXPHOS function, we analyzed gene expression datasets in Crif1-depleted mouse embryonic fibroblasts. Crif1 deficiency preferentially increased the expression of angiopoietin-like 6 (Angptl6) and did not affect other members of the ANGPTL family. Moreover, treatment with mitochondrial OXPHOS inhibitors increased the expression of Angptl6 in cultured adipocytes. To confirm Angptl6 induction in vivo, we generated a murine model of reduced mitochondrial OXPHOS function using adipose tissue-specific Crif1-deficient mice and verified the upregulation of Angptl6 and fibroblast growth factor 21 (Fgf21) in white adipose tissue. Treatment with recombinant ANGPTL6 protein increased oxygen consumption and Pparα expression through the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway in cultured adipocytes. Furthermore, the ANGPTL6-mediated increase in Pparα expression resulted in increased FGF21 expression, thereby promoting β-oxidation. In conclusion, mitochondrial OXPHOS function governs the expression of ANGPTL6, which is an essential factor for FGF21 production in adipose tissue and cultured adipocytes.


Diabetes | 2017

Growth Differentiation Factor 15 Mediates Systemic Glucose Regulatory Action of T-Helper Type 2 Cytokines

Seong Eun Lee; Seul Gi Kang; Min Jeong Choi; Saet-Byel Jung; Min Jeong Ryu; Hyo Kyun Chung; Joon Young Chang; Yong Kyung Kim; Ju Hee Lee; Koon Soon Kim; Hyun Jin Kim; Heung-Kyu Lee; Hyon-Seung Yi; Minho Shong

T-helper type 2 (Th2) cytokines, including interleukin (IL)-13 and IL-4, produced in adipose tissue, are critical regulators of intra-adipose and systemic lipid and glucose metabolism. Furthermore, IL-13 is a potential therapy for insulin resistance in obese mouse models. Here, we examined mediators produced by adipocytes that are responsible for regulating systemic glucose homeostasis in response to Th2 cytokines. We used RNA sequencing data analysis of cultured adipocytes to screen factors secreted in response to recombinant IL-13. Recombinant IL-13 induced expression of growth differentiation factor 15 (GDF15) via the Janus kinase-activated STAT6 pathway. In vivo administration of α-galactosylceramide or IL-33 increased IL-4 and IL-13 production, thereby increasing GDF15 levels in adipose tissue and in plasma of mice; however, these responses were abrogated in STAT6 knockout mice. Moreover, administration of recombinant IL-13 to wild-type mice fed a high-fat diet (HFD) improved glucose intolerance; this was not the case for GDF15 knockout mice fed the HFD. Taken together, these data suggest that GDF15 is required for IL-13–induced improvement of glucose intolerance in mice fed an HFD. Thus, beneficial effects of Th2 cytokines on systemic glucose metabolism and insulin sensitivity are mediated by GDF15. These findings open up a potential pharmacological route for reversing insulin resistance associated with obesity.


Nature Communications | 2018

Reduced oxidative capacity in macrophages results in systemic insulin resistance

Saet Byel Jung; Min Jeong Choi; Dongryeol Ryu; Hyon Seung Yi; Seong Eun Lee; Joon Young Chang; Hyo Kyun Chung; Yong Kyung Kim; Seul Gi Kang; Ju Hee Lee; Koon Soon Kim; Hyun Jin Kim; Cuk Seong Kim; Chul Ho Lee; Robert W. Williams; Hail Kim; Heung-Kyu Lee; Johan Auwerx; Minho Shong

Oxidative functions of adipose tissue macrophages control the polarization of M1-like and M2-like phenotypes, but whether reduced macrophage oxidative function causes systemic insulin resistance in vivo is not clear. Here, we show that mice with reduced mitochondrial oxidative phosphorylation (OxPhos) due to myeloid-specific deletion of CR6-interacting factor 1 (Crif1), an essential mitoribosomal factor involved in biogenesis of OxPhos subunits, have M1-like polarization of macrophages and systemic insulin resistance with adipose inflammation. Macrophage GDF15 expression is reduced in mice with impaired oxidative function, but induced upon stimulation with rosiglitazone and IL-4. GDF15 upregulates the oxidative function of macrophages, leading to M2-like polarization, and reverses insulin resistance in ob/ob mice and HFD-fed mice with myeloid-specific deletion of Crif1. Thus, reduced macrophage oxidative function controls systemic insulin resistance and adipose inflammation, which can be reversed with GDF15 and leads to improved oxidative function of macrophages.M1-like polarization of macrophages is thought to control adipose inflammation and associated insulin resistance and metabolic syndrome. Here the authors show that macrophage-specific deletion of the OxPhos-related gene Crif1 results in an M1-like phenotype in mice, and that the effects can be reversed by recombinant GDF15.

Collaboration


Dive into the Joon Young Chang's collaboration.

Top Co-Authors

Avatar

Minho Shong

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Koon Soon Kim

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Hyo Kyun Chung

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Hyon-Seung Yi

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Seong Eun Lee

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Hyun Jin Kim

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Min Jeong Choi

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Yong Kyung Kim

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

J. Lee

Catholic University of Korea

View shared research outputs
Top Co-Authors

Avatar

Min Jeong Ryu

Chungnam National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge