Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seong Eun Lee is active.

Publication


Featured researches published by Seong Eun Lee.


PLOS Genetics | 2013

Crif1 Deficiency Reduces Adipose OXPHOS Capacity and Triggers Inflammation and Insulin Resistance in Mice

Min Jeong Ryu; Soung Jung Kim; Yong Kyung Kim; Min Jeong Choi; Surendar Tadi; Min Hee Lee; Seong Eun Lee; Hyo Kyun Chung; Saet Byel Jung; Hyun-Jin Kim; Young Suk Jo; Koon Soon Kim; Sang-Hee Lee; Jin-Man Kim; Gi Ryang Kweon; Ki Cheol Park; Jung Uee Lee; Young-Yun Kong; Chul-Ho Lee; Jongkyeong Chung; Minho Shong

Impaired mitochondrial oxidative phosphorylation (OXPHOS) has been proposed as an etiological mechanism underlying insulin resistance. However, the initiating organ of OXPHOS dysfunction during the development of systemic insulin resistance has yet to be identified. To determine whether adipose OXPHOS deficiency plays an etiological role in systemic insulin resistance, the metabolic phenotype of mice with OXPHOS–deficient adipose tissue was examined. Crif1 is a protein required for the intramitochondrial production of mtDNA–encoded OXPHOS subunits; therefore, Crif1 haploinsufficient deficiency in mice results in a mild, but specific, failure of OXPHOS capacity in vivo. Although adipose-specific Crif1-haploinsufficient mice showed normal growth and development, they became insulin-resistant. Crif1-silenced adipocytes showed higher expression of chemokines, the expression of which is dependent upon stress kinases and antioxidant. Accordingly, examination of adipose tissue from Crif1-haploinsufficient mice revealed increased secretion of MCP1 and TNFα, as well as marked infiltration by macrophages. These findings indicate that the OXPHOS status of adipose tissue determines its metabolic and inflammatory responses, and may cause systemic inflammation and insulin resistance.


Journal of Cell Biology | 2017

Growth differentiation factor 15 is a myomitokine governing systemic energy homeostasis

Hyo Kyun Chung; Dongryeol Ryu; Koon Soon Kim; Joon Young Chang; Yong Kyung Kim; Hyon Seung Yi; Seul Gi Kang; Min Jeong Choi; Seong Eun Lee; Saet Byel Jung; Min Jeong Ryu; Soung Jung Kim; Gi Ryang Kweon; Hail Kim; Jung Hwan Hwang; Chul Ho Lee; Se-Jin Lee; Christopher E. Wall; Michael Downes; Ronald M. Evans; Johan Auwerx; Minho Shong

Reduced mitochondrial electron transport chain activity promotes longevity and improves energy homeostasis via cell-autonomous and –non-autonomous factors in multiple model systems. This mitohormetic effect is thought to involve the mitochondrial unfolded protein response (UPRmt), an adaptive stress-response pathway activated by mitochondrial proteotoxic stress. Using mice with skeletal muscle–specific deficiency of Crif1 (muscle-specific knockout [MKO]), an integral protein of the large mitoribosomal subunit (39S), we identified growth differentiation factor 15 (GDF15) as a UPRmt-associated cell–non-autonomous myomitokine that regulates systemic energy homeostasis. MKO mice were protected against obesity and sensitized to insulin, an effect associated with elevated GDF15 secretion after UPRmt activation. In ob/ob mice, administration of recombinant GDF15 decreased body weight and improved insulin sensitivity, which was attributed to elevated oxidative metabolism and lipid mobilization in the liver, muscle, and adipose tissue. Thus, GDF15 is a potent mitohormetic signal that safeguards against the onset of obesity and insulin resistance.


The Journal of Clinical Endocrinology and Metabolism | 2011

Mitochondrial Localization and Regulation of BRAFV600E in Thyroid Cancer: A Clinically Used RAF Inhibitor Is Unable to Block the Mitochondrial Activities of BRAFV600E

Min Hee Lee; Seong Eun Lee; Dong Wook Kim; Min Jeong Ryu; Sung Jin Kim; Sung Joong Kim; Yong Kyoung Kim; Ji Hoon Park; Gi Ryang Kweon; Jin-Man Kim; Jung Uee Lee; Valentina De Falco; Young Suk Jo; Minho Shong

CONTEXT The oncogenic BRAF(V600E) mutation results in an active structural conformation characterized by greatly elevated ERK activity. However, additional cellular effects caused by subcellular action of BRAF(V600E) remain to be identified. OBJECTIVE To explore these effects, differences in the subcellular localization of wild-type and mutant BRAF in thyroid cancer were investigated. RESULTS A significant proportion of endogenous and exogenous BRAF(V600E), but not wild-type BRAF, was detected in the mitochondrial fraction, similar to other BRAF mutants including BRAF(V600D), BRAF(V600K), BRAF(V600R), and BRAF(G469A), which showed elevated kinase activity and mitochondrial localization. Induced expression of BRAF(V600E) suppressed the apoptotic responses against staurosporine and TNFα/cycloheximide. Interestingly, the mitochondrial localization and antiapoptotic activities of BRAF(V600E) were unaffected by sorafenib and U0126 suppression of MAPK kinase (MEK) and ERK activities. Similarly, although the RAF inhibitor sorafenib effectively inhibited MEK/ERK activation, it did not block the mitochondrial localization of BRAF(V600E). In addition, inducible expression of BRAF(V600E) increased the glucose uptake rate and decreased O(2) consumption, suggesting that BRAF(V600E) reduces mitochondrial oxidative phosphorylation, a signature feature of cancer cells. Again, these metabolic alterations resulted by BRAF(V600E) expression were not affected by the treatment of thyroid cells by sorafenib. Therefore, RAF and MEK inhibitors are unable to block the antiapoptotic activity of BRAF(V600E) or correct the high glucose uptake rate and glycolytic activity and suppressed mitochondrial oxidative phosphorylation induced by BRAF(V600E). CONCLUSIONS The mitochondrial localization observed in oncogenic BRAF mutants might be related to their altered responses to apoptotic stimuli and characteristic metabolic phenotypes found in thyroid cancer. The inability of MEK and RAF inhibitors, U0126 and sorafenib, respectively, to block the mitochondrial localization of BRAF(V600E) has additional therapeutic implications for BRAF(V600E)-positive thyroid cancers.


European Journal of Endocrinology | 2012

Dual specificity phosphatase 6 as a predictor of invasiveness in papillary thyroid cancer

Jung Uee Lee; Songmei Huang; Min Hee Lee; Seong Eun Lee; Min Jeong Ryu; Sung Joong Kim; Yong Kyoung Kim; Seul Young Kim; Kyong Hye Joung; Jin-Man Kim; Minho Shong; Young Suk Jo

OBJECTIVE The genetic mutations causing the constitutive activation of MEK/ERK have been regarded as an initiating factor in papillary thyroid carcinoma (PTC). The ERK-specific dual specificity phosphatase 6 (DUSP6) is part of the ERK-dependent transcriptional output. Therefore, the coordinated regulation of the activities of ERK kinases and DUSP6 may need to be reestablished to make new balances in PTC. METHODS To investigate the role of DUSP6 in the regulation of ERK1/2 (MAPK3/1)-dependent transcription, 42 benign neoplasms and 167 PTCs were retrospectively analyzed by immunohistochemistry with dideoxy sequencing to detect BRAF(V600E) mutation. RESULTS The expressions of total ERK1/2, DUSP6, c-Fos (FOS), c-Myc (MYC), cyclin D1, and PCNA were markedly increased in PTC compared with those in benign neoplasms. However, phospho-ERK1/2 was detected in only eight (4.8%) cases out of 167 PTC samples. Unexpectedly, the staining intensity and nuclear localization of ERK1/2 were not affected by the presence or absence of the BRAF(V600E) mutation. However, the expressions of c-Fos and PCNA were elevated in BRAF(V600E)-positive PTC compared with those in BRAF(V600E)-negative PTC. Interestingly, the higher staining intensities of DUSP6 were associated with the level of total ERK1/2 expression (P=0.04) and with high-risk biological features such as age (P=0.05), tumor size (P=0.01), and extrathyroidal extension (linear by linear association, P=0.02). In addition, DUSP6 silencing significantly decreased the cell viability and migration rate of FRO cells. CONCLUSIONS The coordinated upregulation of total ERK1/2 and its phosphatase, DUSP6, is related to bare detection of phospho-ERK1/2 in PTC regardless of BRAF(V)(600E) mutation status. A link between DUSP6 expression and high-risk features of PTC suggested that DUSP6 is an important independent factor affecting the signaling pathways in established PTC.


Clinical Cancer Research | 2012

Aberrant L1 Cell Adhesion Molecule Affects Tumor Behavior and Chemosensitivity in Anaplastic Thyroid Carcinoma

Koon Soon Kim; Jeong-Ki Min; Zhe Long Liang; Kyung-min Lee; Jung Uee Lee; Kwang-Hee Bae; Min Hee Lee; Seong Eun Lee; Min Jeong Ryu; Soung Jung Kim; Yong Kyoung Kim; Min Jeong Choi; Young Suk Jo; Jin-Man Kim; Minho Shong

Purpose: Anaplastic thyroid carcinoma (ATC) is one of the most invasive human cancers and has a poor prognosis. Molecular targets of ATC that determine its highly aggressive nature remain unidentified. This study investigated L1 cell adhesion molecule (L1CAM) expression and its role in tumorigenesis of ATCs. Experimental Design: Expression of L1CAM in thyroid cancer was evaluated by immunohistochemical analyses of tumor samples from patients with thyroid cancer. We investigated the role of L1CAM in proliferation, migration, invasion, and chemoresistance using short hairpin RNA (shRNA) knockdown experiments in human ATC cell lines. Finally, we evaluated the role of L1CAM on tumorigenesis with ATC xenograft assay in a nude mouse model. Results: L1CAM expression was not detectable in normal follicular epithelial cells of the thyroid or in differentiated thyroid carcinoma. In contrast, analysis of ATC samples showed specifically higher expression of L1CAM in the invasive area of the tumor. Specific knockdown of L1CAM in the ATC cell lines, FRO and 8505C, caused a significant decrease in the proliferative, migratory, and invasive capabilities of the cells. Suppression of L1CAM expression in ATC cell lines increased chemosensitivity to gemcitabine or paclitaxel. Finally, in an ATC xenograft model, depletion of L1CAM markedly reduced tumor growth and increased the survival of tumor-bearing mice. Conclusions: We report that L1CAM is highly expressed in the samples taken from patients with ATCs. L1CAM plays an important role in determining tumor behavior and chemosensitivity in cell lines derived from ATCs. Therefore, we suggest that L1CAM may be an important therapeutic target in patients with ATCs. Clin Cancer Res; 18(11); 3071–8. ©2012 AACR.


Molecules and Cells | 2013

Mitochondrial oxidative phosphorylation reserve is required for hormone- and PPARγ agonist-induced adipogenesis

Min Jeong Ryu; Soung Jung Kim; Min Jeong Choi; Yong Kyung Kim; Min Hee Lee; Seong Eun Lee; Hyo Kyun Chung; Saet Byel Jung; Hyun-Jin Kim; Koon Soon Kim; Young Suk Jo; Gi Ryang Kweon; Chul-Ho Lee; Minho Shong

Adipocyte differentiation requires the coordinated activities of several nuclear transcription factors. Recently, mitochondria biogenesis was reported to occur during adipocyte differentiation and following treatment with thiazolidinediones in vitro and in vivo. Crif1 is a translational factor for mitochondrial DNA (mtDNA) and is important for transcription of the mitochondrial oxidative phosphorylation (OXPHOS) complex. To investigate the role of OXPHOS in adipogenesis, we analyzed adipocyte differentiation following disruption of Crif1 in vitro and in vivo. The adipose-specific Crif1 knockout mouse had a lower body weight and less fat mass than wild-type mice. Furthermore, adipocytes were smaller and had a dysplastic morphology in the adipose-specific Crif1 knockout mouse. 3T3-L1 adipocytes or adipose-derived stem cells (ADSCs) that lacked Crif1 expressed lower levels of mtDNA-encoded OXPHOS subunits, and adipocyte differentiation was disrupted. Rosiglitazone treatment did not induce adipogenesis or mitochondria biogenesis in Crif1 knockout ADSCs. These results show that mitochondrial OXPHOS and Crif1 are required for rosiglitazone- and hormone-induced adipogenesis.


Carcinogenesis | 2015

Dysregulation of Parkin-mediated mitophagy in thyroid Hürthle cell tumors.

J. Lee; Sujin Ham; Min Hee Lee; Soung Jung Kim; Ji Hoon Park; Seong Eun Lee; Joon Young Chang; Kyong Hye Joung; Tae Yong Kim; Jin-Man Kim; Hae Joung Sul; Gi Ryang Kweon; Young Suk Jo; Koon Soon Kim; Young Kee Shong; Giuseppe Gasparre; Jongkyeong Chung; Anna Maria Porcelli; Minho Shong

Abnormal accumulation of defective mitochondria is the hallmark of oncocytes, which are frequently observed in thyroid Hürthle cell lesions. Autophagy is an essential cellular catabolic mechanism for the degradation of dysfunctional organelles and has been implicated in several human diseases. It is yet unknown how autophagic turnover of defective mitochondria in Hürthle cell tumors is regulated. We characterized the expression patterns of molecular markers including Beclin1, LC3, PINK1 and Parkin, which are required for autophagy or mitophagy, in human oncocytic lesions of the thyroid. To undertake mechanistic studies, we investigated autophagy and mitophagy using XTC.UC1 cells, the only in vitro model of Hürthle cell tumors. Beclin1 and LC3 were highly expressed in oncocytes of Hürthle cell tumors. XTC.UC1 showed autophagic responses to starvation and rapamycin treatment, whereas they displayed ineffective activation of mitophagy, which is triggered by the coordinated action of PINK1 and Parkin in response to CCCP. This resulted in a decreased turnover of abnormal mitochondria. The mechanisms underlying defective mitophagy and mitochondrial turnover were investigated by genetic analysis of the PARK2 gene in XTC.UC1 and Hürthle cell tumor tissues. XTC.UC1 and several tumors harbored the V380L mutation, resulting in dysfunctional autoubiquitination and decreased E3 ligase activity. Consistently, oncocytes in Hürthle cell tumors displayed comparable expression of PINK1 but decreased Parkin expression in comparison to normal thyrocytes. The introduction of wild-type Parkin sensitized XTC.UC1 to death induced by CCCP. This study provides a possible etiological basis for oncocytic formation in heterogeneous Hürthle cell tumors through insufficient mitophagy leading to ineffective turnover of aberrant mitochondria caused by dysfunctional Parkin-mediated pathways of mitochondria quality control.


Endocrinology | 2015

Thyroid Dysfunction Associated With Follicular Cell Steatosis in Obese Male Mice and Humans

Min Hee Lee; Jung Uee Lee; Kyong Hye Joung; Yong Kyung Kim; Min Jeong Ryu; Seong Eun Lee; Soung Jung Kim; Hyo Kyun Chung; Min Jeong Choi; Joon Young Chang; Sang-Hee Lee; Gi Ryang Kweon; Hyun Jin Kim; Koon Soon Kim; Seong-Min Kim; Young Suk Jo; Jeongwon Park; Sheue-yann Cheng; Minho Shong

Adult thyroid dysfunction is a common endocrine disorder associated with an increased risk of cardiovascular disease and mortality. A recent epidemiologic study revealed a link between obesity and increased prevalence of hypothyroidism. It is conceivable that excessive adiposity in obesity might lead to expansion of the interfollicular adipose (IFA) depot or steatosis in thyroid follicular cells (thyroid steatosis, TS). In this study, we investigated the morphological and functional changes in thyroid glands of obese humans and animal models, diet-induced obese (DIO), ob/ob, and db/db mice. Expanded IFA depot and TS were observed in obese patients. Furthermore, DIO mice showed increased expression of lipogenesis-regulation genes, such as sterol regulatory element binding protein 1 (SREBP-1), peroxisome proliferator-activated receptor γ (PPARγ), acetyl coenzyme A carboxylase (ACC), and fatty acid synthetase (FASN) in the thyroid gland. Steatosis and ultrastructural changes, including distension of the endoplasmic reticulum (ER) and mitochondrial distortion in thyroid follicular cells, were uniformly observed in DIO mice and genetically obese mouse models, ob/ob and db/db mice. Obese mice displayed a variable degree of primary thyroid hypofunction, which was not corrected by PPARγ agonist administration. We propose that systemically increased adiposity is associated with characteristic IFA depots and TS and may cause or influence the development of primary thyroid failure.


Yonsei Medical Journal | 2013

NAD(P)H: Quinone Oxidoreductase 1 and NRH:Quinone Oxidoreductase 2 Polymorphisms in Papillary Thyroid Microcarcinoma: Correlation with Phenotype

J. Lee; Koon Soon Kim; Min Ho Lee; Yeon Soo Kim; Min Hee Lee; Seong Eun Lee; Yong Kyung Kim; Min Jeong Ryu; Soung Jung Kim; Min Jeong Choi; Young Suk Jo

Purpose NAD(P)H:Quinone Oxidoreductase 1 (NQO1) C609T missense variant (NQO1*2) and 29 basepair (bp)-insertion/deletion (I29/D) polymorphism of the NRH:Quinone Oxidoreductase 2 (NQO2) gene promoter have been proposed as predictive and prognostic factors for cancer development and progression. The purpose of this study is to investigate the relationship between NQO1/NQO2 genotype and clinico-pathological features of papillary thyroid microcarcinoma (PTMC). Materials and Methods Genomic DNA was isolated from 243 patients; and clinical data were retrospectively analyzed. NQO1*2 and tri-allelic polymorphism of NQO2 were investigated by polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) analysis. Results PTMC with NQO1*2 frequently exhibited extra-thyroidal extension as compared to PTMC with wild-type NQO1 (p=0.039). There was a significant relationship between I29/I29 homozygosity of NQO2 and lymph node metastasis (p=0.042). Multivariate analysis showed that the I29/I29 genotype was associated with an increased risk of lymph node metastasis (OR, 2.24; 95% CI, 1.10-4.56; p=0.026). Conclusion NQO1*2 and I29 allele of the NQO2 are associated with aggressive clinical phenotypes of PTMC, and the I29 allele represents a putative prognostic marker for PTMC.


Journal of Endocrinology | 2017

ANGPTL6 expression is coupled with mitochondrial OXPHOS function to regulate adipose FGF21

Seul Gi Kang; Hyon Seung Yi; Min Jeong Choi; Min Jeong Ryu; Saet-Byel Jung; Hyo Kyun Chung; Joon Young Chang; Yong Kyung Kim; Seong Eun Lee; Hyeon Woo Kim; Hoil Choi; Dong Seok Kim; Ju Hee Lee; Koon Soon Kim; Hyun Jin Kim; Chul Ho Lee; Yuichi Oike; Minho Shong

Recent studies revealed that the inhibition of mitochondrial oxidative phosphorylation (OXPHOS) is coupled with the mitochondrial unfolded protein response, thereby stimulating the secretion of non-cell autonomous factors, which may control systemic energy metabolism and longevity. However, the nature and roles of non-cell autonomous factors induced in adipose tissue in response to reduced OXPHOS function remain to be clarified in mammals. CR6-interacting factor 1 (CRIF1) is an essential mitoribosomal protein for the intramitochondrial production of mtDNA-encoded OXPHOS subunits. Deficiency of CRIF1 impairs the proper formation of the OXPHOS complex, resulting in reduced function. To determine which secretory factors are induced in response to reduced mitochondrial OXPHOS function, we analyzed gene expression datasets in Crif1-depleted mouse embryonic fibroblasts. Crif1 deficiency preferentially increased the expression of angiopoietin-like 6 (Angptl6) and did not affect other members of the ANGPTL family. Moreover, treatment with mitochondrial OXPHOS inhibitors increased the expression of Angptl6 in cultured adipocytes. To confirm Angptl6 induction in vivo, we generated a murine model of reduced mitochondrial OXPHOS function using adipose tissue-specific Crif1-deficient mice and verified the upregulation of Angptl6 and fibroblast growth factor 21 (Fgf21) in white adipose tissue. Treatment with recombinant ANGPTL6 protein increased oxygen consumption and Pparα expression through the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway in cultured adipocytes. Furthermore, the ANGPTL6-mediated increase in Pparα expression resulted in increased FGF21 expression, thereby promoting β-oxidation. In conclusion, mitochondrial OXPHOS function governs the expression of ANGPTL6, which is an essential factor for FGF21 production in adipose tissue and cultured adipocytes.

Collaboration


Dive into the Seong Eun Lee's collaboration.

Top Co-Authors

Avatar

Minho Shong

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Koon Soon Kim

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Min Jeong Ryu

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Min Jeong Choi

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Min Hee Lee

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Yong Kyung Kim

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gi Ryang Kweon

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Hyo Kyun Chung

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Joon Young Chang

Chungnam National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge