Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joong-Bae Ahn is active.

Publication


Featured researches published by Joong-Bae Ahn.


Climate Dynamics | 2012

Assessment of the APCC coupled MME suite in predicting the distinctive climate impacts of two flavors of ENSO during boreal winter

Hye-In Jeong; Doo Young Lee; Karumuri Ashok; Joong-Bae Ahn; June-Yi Lee; Jing-Jia Luo; Jae-Kyung E. Schemm; Harry H. Hendon; Karl Braganza; Yoo-Geun Ham

Forecast skill of the APEC Climate Center (APCC) Multi-Model Ensemble (MME) seasonal forecast system in predicting two main types of El Niño-Southern Oscillation (ENSO), namely canonical (or cold tongue) and Modoki ENSO, and their regional climate impacts is assessed for boreal winter. The APCC MME is constructed by simple composite of ensemble forecasts from five independent coupled ocean-atmosphere climate models. Based on a hindcast set targeting boreal winter prediction for the period 1982–2004, we show that the MME can predict and discern the important differences in the patterns of tropical Pacific sea surface temperature anomaly between the canonical and Modoki ENSO one and four month ahead. Importantly, the four month lead MME beats the persistent forecast. The MME reasonably predicts the distinct impacts of the canonical ENSO, including the strong winter monsoon rainfall over East Asia, the below normal rainfall and above normal temperature over Australia, the anomalously wet conditions across the south and cold conditions over the whole area of USA, and the anomalously dry conditions over South America. However, there are some limitations in capturing its regional impacts, especially, over Australasia and tropical South America at a lead time of one and four months. Nonetheless, forecast skills for rainfall and temperature over East Asia and North America during ENSO Modoki are comparable to or slightly higher than those during canonical ENSO events.


Journal of Geophysical Research | 2012

Assessment of the long-lead probabilistic prediction for the Asian summer monsoon precipitation (1983-2011) based on the APCC multimodel system and a statistical model

Soo-Jin Sohn; Young-Mi Min; June-Yi Lee; Chi-Yung Tam; In-Sik Kang; Bin Wang; Joong-Bae Ahn; Toshio Yamagata

[1] The performance of the probabilistic multimodel prediction (PMMP) system of the APEC Climate Center (APCC) in predicting the Asian summer monsoon (ASM) precipitation at a four-month lead (with February initial condition) was compared with that of a statistical model using hindcast data for 1983–2005 and real-time forecasts for 2006–2011. Particular attention was paid to probabilistic precipitation forecasts for the boreal summer after the mature phase of El Nino and Southern Oscillation (ENSO). Taking into account the fact that coupled models’ skill for boreal spring and summer precipitation mainly comes from their ability to capture ENSO teleconnection, we developed the statistical model using linear regression with the preceding winter ENSO condition as the predictor. Our results reveal several advantages and disadvantages in both forecast systems. First, the PMMP appears to have higher skills for both above- and below-normal categories in the six-year real-time forecast period, whereas the cross-validated statistical model has higher skills during the 23-year hindcast period. This implies that the cross-validated statistical skill may be overestimated. Second, the PMMP is the better tool for capturing atypical ENSO (or non-canonical ENSO related) teleconnection, which has affected the ASM precipitation during the early 1990s and in the recent decade. Third, the statistical model is more sensitive to the ENSO phase and has an advantage in predicting the ASM precipitation after the mature phase of La Nina.


Asia-pacific Journal of Atmospheric Sciences | 2012

An assessment of future dryness over Korea based on the ECHAM5-RegCM3 model chain under A1B emission scenario

Eun-Soon Im; Joong-Bae Ahn; Do-Woo Kim

We analyze the future dryness over Korea based on the projected temperature and precipitation. For fine-scale climate information, the ECHAM5/MPI-OM A1B simulation has been dynamically downscaled using the RegCM3 double-nested system. A 130-year long-term climatology (1971–2100) from the mother domain (East Asia: 60 km) and nested domain (South Korea: 20 km) is discussed. Based on the intercomparison with CMIP3 participant models, the ECHAM5/MPI-OM provides climatic change information over the East Asia that is not markedly different from other projections. However, the reduction of summer precipitation over Korea is rather different with ensemble mean of CMIP3 participant models. The downscaled results generally follow the behavior of ECHAM5/MPIOM, but substantial fine-scale details are found in the spatial pattern and the change signals become more enhanced at the local scale. In the future projection, significant warming is found regardless of the season and region while the change in precipitation shows a mixed feature with both increasing and decreasing patterns. The increase of temperature enhances the evapotranspiration, and hence the actual water stress becomes more pronounced in the warmer climate. This is related to the negative trends of the self-calibrating Palmer Drought Severity Index (PDSI) to measure the drought condition in Korea. Although PDSI is overall associated with the precipitation variation, its long-term trend tends to be modulated by the temperature trend. It is confirmed that the detrended temperature is shown to mask the decreasing tendency of the PDSI. The result indicates that without an increase in precipitation appropriate for atmospheric moisture demand, future dryness is a more likely condition under global warming.


Journal of Climate | 2015

Changes of Early Summer Precipitation in the Korean Peninsula and Nearby Regions Based on RCP Simulations

Ja-Young Hong; Joong-Bae Ahn

AbstractIn this study, the projected regional precipitation changes over northeast Asia (NEA) during early summer [May–July (MJJ)] for the late twenty-first century (2071–2100) were investigated using a high-resolution regional climate model (WRF3.4) based on the representative concentration pathways (RCPs) induced by the global circulation model (HadGEM2-AO). The increased horizontal resolution of the regional model with a 12.5-km horizontal resolution enabled it to reproduce the terrain-following features reasonably well compared to low-resolution reanalysis and HadGEM2-AO model data. The results of a regionally downscaled historical (1981–2010) experiment (D_Historical) demonstrated the model’s ability to capture the spatial and temporal variations of rainband migrating meridionally during MJJ over NEA. According to the regional model projection, intensive precipitation will increase and the rainband will affect the Korean Peninsula approximately 10 days earlier than in the D_Historical cases in both R...


Journal of Applied Meteorology and Climatology | 2013

Improvement of Multimodel Ensemble Seasonal Prediction Skills over East Asian Summer Monsoon Region Using a Climate Filter Concept

Doo Young Lee; Joong-Bae Ahn; Karumuri Ashok

AbstractThe authors propose the use of a “climate filter” concept to enhance prediction skill of a multimodel ensemble (MME) suite for the East Asian summer monsoon (EASM) precipitation and temperature at 850 hPa. The method envisages grading models on the basis of the degree of reproducibility of the association of EASM variability with a few relevant climate drivers with the respective model hindcasts for the period 1981–2003. The analysis identifies the previous winter Nino-3.4 and spring North Atlantic Oscillation indices as the most suitable climate drivers in designing a climate filter for evaluating models that replicate the observed teleconnections to EASM well. The results show that the hindcast skills of a new MME with the better-performing models are significantly higher than those from the nonperforming models or from an all-inclusive operational MME.


Korean Journal of Agricultural and Forest Meteorology | 2010

A Simulation of Agro-Climate Index over the Korean Peninsula Using Dynamical Downscaling with a Numerical Weather Prediction Model

Joong-Bae Ahn; Jina Hur; Kyo-Moon Shim

A regional climate model (RCM) can be a powerful tool to enhance spatial resolution of climate and weather information (IPCC, 2001). In this study we conducted dynamical downscaling using Weather Research and Forecasting Model (WRF) as a RCM in order to obtain high resolution regional agroclimate indices over the Korean Peninsula. For the purpose of obtaining detailed high resolution agroclimate indices, we first reproduced regional weather for the period of March to June, 2002-2008 with dynamic downscaling method under given lateral boundary conditions from NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanalysis data. Normally, numerical model results have shown biases against observational results due to the uncertainties in the modelis initial conditions, physical parameterizations and our physical understanding on nature. Hence in this study, by employing a statistical method, the systematic bias in the modelis results was estimated and corrected for better reproduction of climate on high resolution. As a result of the correction, the systematic bias of the model was properly corrected and the overall spatial patterns in the simulation were well reproduced, resulting in more fine-resolution climatic structures. Based on these results, the fine-resolution agro-climate indices were estimated and presented. Compared with the indices derived from observation, the simulated indices reproduced the major and detailed spatial distributions. Our research shows a possibility to simulate regional climate on high resolution and agro-climate indices by using a proper downscaling method with a dynamical weather forecast model and a statistical correction method to minimize the model bias.


Asia-pacific Journal of Atmospheric Sciences | 2016

Projections of high resolution climate changes for South Korea using multiple-regional climate models based on four RCP scenarios. Part 1: surface air temperature

Myoung-Seok Suh; Seok-Geun Oh; Young-Suk Lee; Joong-Bae Ahn; Dong-Hyun Cha; Dong-Kyou Lee; Song-You Hong; Seung-Ki Min; Seong-Chan Park; Hyun-Suk Kang

We projected surface air temperature changes over South Korea during the mid (2026-2050) and late (2076-2100) 21st century against the current climate (1981-2005) using the simulation results from five regional climate models (RCMs) driven by Hadley Centre Global Environmental Model, version 2, coupled with the Atmosphere- Ocean (HadGEM2-AO), and two ensemble methods (equal weighted averaging, weighted averaging based on Taylor’s skill score) under four Representative Concentration Pathways (RCP) scenarios. In general, the five RCM ensembles captured the spatial and seasonal variations, and probability distribution of temperature over South Korea reasonably compared to observation. They particularly showed a good performance in simulating annual temperature range compared to HadGEM2-AO. In future simulation, the temperature over South Korea will increase significantly for all scenarios and seasons. Stronger warming trends are projected in the late 21st century than in the mid-21st century, in particular under RCP8.5. The five RCM ensembles projected that temperature changes for the mid/late 21st century relative to the current climate are +1.54°C/+1.92°C for RCP2.6, +1.68°C/+2.91°C for RCP4.5, +1.17°C/+3.11°C for RCP6.0, and +1.75°C/+4.73°C for RCP8.5. Compared to the temperature projection of HadGEM2-AO, the five RCM ensembles projected smaller increases in temperature for all RCP scenarios and seasons. The inter-RCM spread is proportional to the simulation period (i.e., larger in the late-21st than mid-21st century) and significantly greater (about four times) in winter than summer for all RCP scenarios. Therefore, the modeled predictions of temperature increases during the late 21st century, particularly for winter temperatures, should be used with caution.


Journal of Geophysical Research | 2014

Characteristics of atmospheric circulation over East Asia associated with summer blocking

Yong‐Jun Park; Joong-Bae Ahn

The boreal summer-blocking regions were defined using the reanalysis data over the three decades of 1981–2010, and the influence of the blocking on atmospheric circulation in East Asia was examined. The summer blocking occurred mostly in North Europe, Ural region, Sea of Okhotsk (OK), and northeastern Pacific. The summer blocking was the major mode in these four regions according to principal component analysis using 500 hPa geopotential heights. Among the four blocking regions, OK blocking frequencies (OK BFs) showed negative and positive correlations with summer temperature and precipitation of Northeast Asia centered around the East Sea/Sea of Japan, respectively. In particular, the OK BF had a statistically significant correlation coefficient of −0.54 with summer temperatures in the Korean Peninsula. This indicates that the summer temperature and precipitation in this region were closely related to the OK blocking. According to the composite analysis for the years of higher-than-average BF (positive BF years), the OK High became stronger and expanded, while the North Pacific High was weakened over the Korean Peninsula and Japan and an anomalously deep trough was developed in the upper layer (200 hPa). As the cool OK High expanded, the temperature decreased over Northeast Asia centered around the East Sea/Sea of Japan and the lower level (850 hPa) air converged cyclonically, resulting in the increased precipitation, which induced the divergence in the upper layer and thereby strengthened the jet stream. Thus, the boreal summer OK blocking systematically influencing the area as the most dominant mode.


Asia-pacific Journal of Atmospheric Sciences | 2015

Global energy and water balances in the latest reanalyses

Suchul Kang; Joong-Bae Ahn

The recently released Japanese 55-year Reanalysis (JRA- 55) data are evaluated and compared with three other global reanalyses, namely Interim version of the next European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim), Modern Era Retrospective-Analysis for Research and Applications (MERRA) and Climate Forecast System Reanalysis (CFSR), in terms of global energy and water balances. All four reanalyses show an energy imbalance at TOA and surface. Especially, clouds in JRA-55 are optically weaker than those in the three other reanalyses, leading to excessive outgoing longwave radiation, which in turn causes negative net energy flux at TOA. Moreover, JRA-55 has a negative imbalance at surface and at TOA, which is attributed to systematic positive biases in latent heat flux over the ocean. As for the global water balance, all reanalyses present a similar spatial pattern of the difference between evaporation and precipitation (E-P). However, JRA-55 has a relatively strong negative (positive) E-P in the Intertropical Convergence Zone and South Pacific Convergence Zone (extratropical regions) due to overestimated precipitation (evaporation), in spite of the global net being close to zero. In time series analysis, especially in E-P, significant stepwise changes occur in MERRA, CFSR and ERA-Interim due to the changes in the satellite observing system used in the data assimilation. Both MERRA and CFSR show a strong downward E-P shift in 1998, simultaneously with the start of the assimilation of AMSU-A sounding radiances. ERA-Interim exhibits an upward E-P shift in 1992 due to changes in observations from the SSM/I of new DMSP satellites. On the contrary, JRA-55 exhibits less trends and remains stable over time, which may be caused by newly available, homogenized observations and advances in data assimilation technique.


Asia-pacific Journal of Atmospheric Sciences | 2016

Changes of precipitation extremes over South Korea projected by the 5 RCMs under RCP scenarios

Joong-Bae Ahn; Sera Jo; Myoung-Seok Suh; Dong-Hyun Cha; Dong-Kyou Lee; Song-You Hong; Seung-Ki Min; Seong-Chan Park; Hyun-Suk Kang; Kyo-Moon Shim

The change of extreme precipitation is assessed with the HadGEM2-AO - 5 Regional Climate Models (RCMs) chain, which is a national downscaling project undertaken cooperatively by several South Korean institutes aimed at producing regional climate change projection with fine resolution (12.5 km) around the Korean Peninsula. The downscaling domain, resolution and lateral boundary conditions are held the same among the 5 RCMs to minimize the uncertainties from model configuration. Climatological changes reveal a statistically significant increase in the mid-21st century (2046- 2070; Fut1) and the late-21st century (2076-2100; Fut2) precipitation properties related to extreme precipitation, such as precipitation intensity and average of upper 5 percentile daily precipitation, with respect to the reference period (1981-2005). Changes depending on the intensity categories also present a clear trend of decreasing light rain and increasing heavy rain. In accordance with these results, the change of 1-in-50 year maximum precipitation intensity over South Korea is estimated by the GEV method. The result suggests that the 50-year return value (RV50) will change from -32.69% to 72.7% and from -31.6% to 96.32% in Fut1 and from -31.97% to 86.25% and from -19.45% to 134.88% in Fut2 under representative concentration pathway (RCP) 4.5 and 8.5 scenarios, respectively, at the 90% confidence level. This study suggests that multi-RCMs can be used to reduce uncertainties and assess the future change of extreme precipitation more reliably. Moreover, future projection of the regional climate change contains uncertainties evoked from not only driving GCM but also RCM. Therefore, multi-GCM and multi-RCM studies are expected to provide more robust projection.

Collaboration


Dive into the Joong-Bae Ahn's collaboration.

Top Co-Authors

Avatar

Dong-Hyun Cha

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hyun-Suk Kang

Korea Meteorological Administration

View shared research outputs
Top Co-Authors

Avatar

Myoung-Seok Suh

Kongju National University

View shared research outputs
Top Co-Authors

Avatar

Seung-Ki Min

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Eun-Soon Im

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Dong-Kyou Lee

Korea Meteorological Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jina Hur

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Seong-Chan Park

Korea Meteorological Administration

View shared research outputs
Top Co-Authors

Avatar

Chi-Yung Tam

City University of Hong Kong

View shared research outputs
Researchain Logo
Decentralizing Knowledge