Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joost Neijssen is active.

Publication


Featured researches published by Joost Neijssen.


Journal of Experimental Medicine | 2006

Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy.

Eric Reits; James W. Hodge; Carla Herberts; Tom A. Groothuis; Mala Chakraborty; Elizabeth K. Wansley; Kevin Camphausen; Rosalie M. Luiten; Arnold H. de Ru; Joost Neijssen; Alexander Griekspoor; Elly Mesman; Frank A. W. Verreck; Hergen Spits; Jeffrey Schlom; Peter A. van Veelen; Jacques Neefjes

Radiotherapy is one of the most successful cancer therapies. Here the effect of irradiation on antigen presentation by MHC class I molecules was studied. Cell surface expression of MHC class I molecules was increased for many days in a radiation dose-dependent manner as a consequence of three responses. Initially, enhanced degradation of existing proteins occurred which resulted in an increased intracellular peptide pool. Subsequently, enhanced translation due to activation of the mammalian target of rapamycin pathway resulted in increased peptide production, antigen presentation, as well as cytotoxic T lymphocyte recognition of irradiated cells. In addition, novel proteins were made in response to γ-irradiation, resulting in new peptides presented by MHC class I molecules, which were recognized by cytotoxic T cells. We show that immunotherapy is successful in eradicating a murine colon adenocarcinoma only when preceded by radiotherapy of the tumor tissue. Our findings indicate that directed radiotherapy can improve the efficacy of tumor immunotherapy.


Nature | 2005

Cross-presentation by intercellular peptide transfer through gap junctions

Joost Neijssen; Carla Herberts; Jan Wouter Drijfhout; Eric Reits; Lennert Janssen; Jacques Neefjes

Major histocompatibility complex (MHC) class I molecules present peptides that are derived from endogenous proteins. These antigens can also be transferred to professional antigen-presenting cells in a process called cross-presentation, which precedes initiation of a proper T-cell response; but exactly how they do this is unclear. We tested whether peptides can be transferred directly from the cytoplasm of one cell into the cytoplasm of its neighbour through gap junctions. Here we show that peptides with a relative molecular mass of up to ∼1,800 diffuse intercellularly through gap junctions unless a three-dimensional structure is imposed. This intercellular peptide transfer causes cytotoxic T-cell recognition of adjacent, innocent bystander cells as well as activated monocytes. Gap-junction-mediated peptide transfer is restricted to a few coupling cells owing to the high cytosolic peptidase activity. We present a mechanism of antigen acquisition for cross-presentation that couples the antigen presentation system of two adjacent cells and is lost in most tumours: gap-junction-mediated intercellular peptide coupling for presentation by bystander MHC class I molecules and transfer to professional antigen presenting cells for cross-priming.


Immunity | 2003

Peptide Diffusion, Protection, and Degradation in Nuclear and Cytoplasmic Compartments before Antigen Presentation by MHC Class I

Eric Reits; Alexander Griekspoor; Joost Neijssen; Tom A. Groothuis; Kees Jalink; Peter A. van Veelen; Hans Janssen; Jero Calafat; Jan W. Drijfhout; Jacques Neefjes

Antigenic peptides generated by the proteasome have to survive a peptidase-containing environment for presentation by MHC class I molecules. We have visualized the fate and dynamics of intracellular peptides in living cells. We show that peptides are distributed over two different but interconnected compartments, the cytoplasm and the nucleus, and diffuse rapidly through and between these compartments. Since TAP is excluded from the nuclear face of the nuclear envelope, nuclear peptides have to leave the nucleus to contact TAP. Thereby, these peptides encounter cytosolic peptidases that degrade peptides within seconds unless bound to chromatin. Since peptide degradation is far more efficient than translocation, many peptides will be lost for antigen presentation by MHC class I molecules.


Immunity | 2004

A Major Role for TPPII in Trimming Proteasomal Degradation Products for MHC Class I Antigen Presentation

Eric Reits; Joost Neijssen; Carla Herberts; Willemien E. Benckhuijsen; Lennert Janssen; Jan W. Drijfhout; Jacques Neefjes

Intracellular proteins are degraded by the proteasome, and resulting peptides surviving cytoplasmic peptidase activity can be presented by MHC class I molecules. Here, we show that intracellular aminopeptidases degrade peptides within seconds, almost irrespectively of amino acid sequence. N- but not C-terminal extension increases the half-life of peptides until they are 15 amino acids long. Beyond 15 amino acids, peptides are exclusively trimmed by the peptidase TPPII, which displays both exo- and endopeptidase activity. Surprisingly, most proteasomal degradation products are handled by TPPII before presentation by MHC class I molecules. We define three distinct proteolytic activities during antigen processing in vivo. Proteasome-generated peptides relevant for antigen presentation are mostly 15 amino acids or longer. These require TPPII activity for further trimming before becoming substrates for other peptidases and MHC class I. The heterogeneous pool of aminopeptidases will process TPPII products into MHC class I peptides and beyond.


Immunological Reviews | 2005

MHC class I alleles and their exploration of the antigen-processing machinery

Tom A. Groothuis; Alexander Griekspoor; Joost Neijssen; Carla Herberts; Jacques Neefjes

Summary:  At the cell surface, major histocompatibility complex (MHC) class I molecules present fragments of intracellular antigens to the immune system. This is the end result of a cascade of events initiated by multiple steps of proteolysis. Only a small part of the fragments escapes degradation by interacting with the peptide transporter associated with antigen presentation and is translocated into the endoplasmic reticulum lumen for binding to MHC class I molecules. Subsequently, these newly formed complexes can be transported to the plasma membrane for presentation. Every step in this process confers specificity and determines the ultimate result: presentation of only few fragments from a given antigen. Here, we introduce the players in the antigen processing and presentation cascade and describe their specificity and allelic variation. We highlight MHC class I alleles, which are not only different in sequence but also use different aspects of the antigen presentation pathway to their advantage: peptide acquaintance.


Journal of Immunology | 2009

Direct Antigen Presentation and Gap Junction Mediated Cross-Presentation during Apoptosis

Baoxu Pang; Joost Neijssen; Xiaohang Qiao; Lennert Janssen; Hans Janssen; Christoph Lippuner; Jacques Neefjes

MHC class I molecules present peptides from endogenous proteins. Ags can also be presented when derived from extracellular sources in the form of apoptotic bodies. Cross-presentation of such Ags by dendritic cells is required for proper CTL responses. The fate of Ags in cells initiated for apoptosis is unclear as is the mechanism of apoptosis-derived Ag transfer into dendritic cells. Here we show that novel Ags can be generated by caspases and be presented by MHC class I molecules of apoptotic cells. Since gap junctions function until apoptotic cells remodel to form apoptotic bodies, transfer and cross-presentation of apoptotic peptides by neighboring and dendritic cells occurs. We thus define a novel phase in classical Ag presentation and cross-presentation by MHC class I molecules: presentation of Ags created by caspase activities in cells in apoptosis.


Journal of Immunology | 2005

Leucine Aminopeptidase Is Not Essential for Trimming Peptides in the Cytosol or Generating Epitopes for MHC Class I Antigen Presentation

Charles Fenton Towne; Ian A. York; Joost Neijssen; Margaret Karow; Andrew J. Murphy; David M. Valenzuela; George D. Yancopoulos; Jacques Neefjes; Kenneth L. Rock

To detect viral infections and tumors, CD8+ T lymphocytes monitor cells for the presence of antigenic peptides bound to MHC class I molecules. The majority of MHC class I-presented peptides are generated from the cleavage of cellular and viral proteins by the ubiquitin-proteasome pathway. Many of the oligopeptides produced by this process are too long to stably bind to MHC class I molecules and require further trimming for presentation. Leucine aminopeptidase (LAP) is an IFN-inducible cytosolic aminopeptidase that can trim precursor peptides to mature epitopes and has been thought to play an important role in Ag presentation. To examine the role of LAP in generating MHC class I peptides in vivo, we generated LAP-deficient mice and LAP-deficient cell lines. These mutant mice and cells are viable and grow normally. The trimming of peptides in LAP-deficient cells is not reduced under basal conditions or after stimulation with IFN. Similarly, there is no reduction in presentation of peptides from precursor or full-length Ag constructs or in the overall supply of peptides from cellular proteins to MHC class I molecules even after stimulation with IFN. After viral infection, LAP-deficient mice generate normal CTL responses to seven epitopes from three different viruses. These data demonstrate that LAP is not an essential enzyme for generating most MHC class I-presented peptides and reveal redundancy in the function of cellular aminopeptidases.


Journal of Immunology | 2008

Puromycin-Sensitive Aminopeptidase Limits MHC Class I Presentation in Dendritic Cells but Does Not Affect CD8 T Cell Responses during Viral Infections

Charles Fenton Towne; Ian A. York; Joost Neijssen; Margaret Karow; Andrew J. Murphy; David M. Valenzuela; George D. Yancopoulos; Jacques Neefjes; Kenneth L. Rock

Previous experiments using enzyme inhibitors, cell lysates, and purified enzyme have suggested that puromycin-sensitive aminopeptidase (PSA) plays a role in creating and destroying MHC class I-presented peptides although its precise contribution to these processes is unknown. To examine the importance of this enzyme in MHC class I Ag presentation, we have generated PSA-deficient mice and cell lines from these animals. PSA-deficient mice are smaller and do not reproduce as well as wild type mice. In addition, dendritic cells from PSA-deficient mice display more MHC class I molecules on the cell surface, suggesting that PSA normally limits Ag presentation by destroying certain peptides in these key APCs. Surprisingly, MHC class I levels are not altered on other PSA-deficient cells and the processing and presentation of peptide precursors in PSA-deficient fibroblasts is normal. Moreover, PSA-deficient mice have normal numbers of T cells in the periphery, and respond as well as wild type mice to eight epitopes from three viruses. These data indicate that PSA may play a role in limiting MHC class I Ag presentation in dendritic cells in vivo but that it is not essential for generating most MHC class I-presented peptides or for stimulating CTL responses to several Ags.


Journal of Immunology | 2006

Cutting Edge: HLA-B27 Acquires Many N-Terminal Dibasic Peptides: Coupling Cytosolic Peptide Stability to Antigen Presentation

Carla Herberts; Joost Neijssen; Jolanda de Haan; Lennert Janssen; Jan W. Drijfhout; Eric Reits; Jacques Neefjes

Ag presentation by MHC class I is a highly inefficient process because cytosolic peptidases destroy most peptides after proteasomal generation. Various mechanisms shape the MHC class I peptidome. We define a new one: intracellular peptide stability. Peptides with two N-terminal basic amino acids are more stable than other peptides. Such peptides should be overrepresented in the peptidome of MHC class I-associated peptides. HLA-B27 binding peptides use anchor residue R at P2 and, although most amino acids are allowed, particular amino acids are overrepresented at P1, including R and K. We show that such N-terminal dibasic peptides are indeed more efficiently presented by HLA-B27. This suggests that HLA-B27 can present peptides from Ags present in fewer copies than required for successful peptide generation for other MHC class I molecules.


Journal of Cell Biology | 2006

Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy

Eric Reits; James W. Hodge; Carla Herberts; Tom A. Groothuis; Mala Chakraborty; Elizabeth K. Wansley; Kevin Camphausen; Rosalie M. Luiten; Arnold H. de Ru; Joost Neijssen; Alexander Griekspoor; Elly Mesman; Frank A. W. Verreck; Hergen Spits; Jeffrey Schlom; Peter A. van Veelen; Jacques Neefjes

Reits et al. 2006. J. Exp. Med. doi:10.1084/jem.20052494 [OpenUrl][1][Abstract/FREE Full Text][2] [1]: {openurl}?query=rft.jtitle%253DJ.%2BExp.%2BMed.%26rft_id%253Dinfo%253Adoi%252F10.1084%252Fjem.20052494%26rft_id%253Dinfo%253Apmid%252F16636135%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%

Collaboration


Dive into the Joost Neijssen's collaboration.

Top Co-Authors

Avatar

Jacques Neefjes

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Carla Herberts

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Eric Reits

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Alexander Griekspoor

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Lennert Janssen

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Tom A. Groothuis

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Jan W. Drijfhout

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Peter A. van Veelen

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Arnold H. de Ru

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Baoxu Pang

Netherlands Cancer Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge