Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joost van den Brink is active.

Publication


Featured researches published by Joost van den Brink.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2006

Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: Current status

Antonius J. A. van Maris; Derek A. Abbott; Eleonora Bellissimi; Joost van den Brink; Marko Kuyper; Marijke A. H. Luttik; H. Wouter Wisselink; W. Alexander Scheffers; Johannes P. van Dijken; Jack T. Pronk

Fuel ethanol production from plant biomass hydrolysates by Saccharomyces cerevisiae is of great economic and environmental significance. This paper reviews the current status with respect to alcoholic fermentation of the main plant biomass-derived monosaccharides by this yeast. Wild-type S. cerevisiae strains readily ferment glucose, mannose and fructose via the Embden–Meyerhof pathway of glycolysis, while galactose is fermented via the Leloir pathway. Construction of yeast strains that efficiently convert other potentially fermentable substrates in plant biomass hydrolysates into ethanol is a major challenge in metabolic engineering. The most abundant of these compounds is xylose. Recent metabolic and evolutionary engineering studies on S. cerevisiae strains that express a fungal xylose isomerase have enabled the rapid and efficient␣anaerobic fermentation of this pentose. l-Arabinose fermentation, based on the expression of a prokaryotic pathway in S. cerevisiae, has also been established, but needs further optimization before it can be considered for industrial implementation. In addition to these already investigated strategies, possible approaches for metabolic engineering of galacturonic acid and rhamnose fermentation by S. cerevisiae are discussed. An emerging and major challenge is to achieve the rapid transition from proof-of-principle experiments under ‘academic’ conditions (synthetic media, single substrates or simple substrate mixtures, absence of toxic inhibitors) towards efficient conversion of complex industrial substrate mixtures that contain synergistically acting inhibitors.


Applied Microbiology and Biotechnology | 2011

Fungal enzyme sets for plant polysaccharide degradation

Joost van den Brink; Ronald P. de Vries

Enzymatic degradation of plant polysaccharides has many industrial applications, such as within the paper, food, and feed industry and for sustainable production of fuels and chemicals. Cellulose, hemicelluloses, and pectins are the main components of plant cell wall polysaccharides. These polysaccharides are often tightly packed, contain many different sugar residues, and are branched with a diversity of structures. To enable efficient degradation of these polysaccharides, fungi produce an extensive set of carbohydrate-active enzymes. The variety of the enzyme set differs between fungi and often corresponds to the requirements of its habitat. Carbohydrate-active enzymes can be organized in different families based on the amino acid sequence of the structurally related catalytic modules. Fungal enzymes involved in plant polysaccharide degradation are assigned to at least 35 glycoside hydrolase families, three carbohydrate esterase families and six polysaccharide lyase families. This mini-review will discuss the enzymes needed for complete degradation of plant polysaccharides and will give an overview of the latest developments concerning fungal carbohydrate-active enzymes and their corresponding families.


Nature Biotechnology | 2011

Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris

Randy M. Berka; Igor V. Grigoriev; Robert Otillar; Asaf Salamov; Jane Grimwood; Ian Reid; Nadeeza Ishmael; Tricia John; Corinne Darmond; Marie Claude Moisan; Bernard Henrissat; Pedro M. Coutinho; Vincent Lombard; Donald O. Natvig; Erika Lindquist; Jeremy Schmutz; Susan Lucas; Paul Harris; Justin Powlowski; Annie Bellemare; David Taylor; Gregory Butler; Ronald P. de Vries; Iris E. Allijn; Joost van den Brink; Sophia Ushinsky; Reginald Storms; Amy Jo Powell; Ian T. Paulsen; Liam D. H. Elbourne

Thermostable enzymes and thermophilic cell factories may afford economic advantages in the production of many chemicals and biomass-based fuels. Here we describe and compare the genomes of two thermophilic fungi, Myceliophthora thermophila and Thielavia terrestris. To our knowledge, these genomes are the first described for thermophilic eukaryotes and the first complete telomere-to-telomere genomes for filamentous fungi. Genome analyses and experimental data suggest that both thermophiles are capable of hydrolyzing all major polysaccharides found in biomass. Examination of transcriptome data and secreted proteins suggests that the two fungi use shared approaches in the hydrolysis of cellulose and xylan but distinct mechanisms in pectin degradation. Characterization of the biomass-hydrolyzing activity of recombinant enzymes suggests that these organisms are highly efficient in biomass decomposition at both moderate and high temperatures. Furthermore, we present evidence suggesting that aside from representing a potential reservoir of thermostable enzymes, thermophilic fungi are amenable to manipulation using classical and molecular genetics.


Microbial Cell Factories | 2012

Construction of a cellulase hyper-expression system in Trichoderma reesei by promoter and enzyme engineering

Gen Zou; Shaohua Shi; Yanping Jiang; Joost van den Brink; Ronald P. de Vries; Ling Chen; Jun Zhang; Liang Ma; Chengshu Wang; Zhihua Zhou

BackgroundTrichoderma reesei is the preferred organism for producing industrial cellulases. However, a more efficient heterologous expression system for enzymes from different organism is needed to further improve its cellulase mixture. The strong cbh1 promoter of T. reesei is frequently used in heterologous expression, however, the carbon catabolite repressor CREI may reduce its strength by binding to the cbh1 promoter at several binding sites. Another crucial point to enhance the production of heterologous enzymes is the stability of recombinant mRNA and the prevention of protein degradation within the endoplasmic reticulum, especially for the bacteria originated enzymes.In this study, the CREI binding sites within the cbh1 promoter were replaced with the binding sites of transcription activator ACEII and the HAP2/3/5 complex to improve the promoter efficiency. To further improve heterologous expression efficiency of bacterial genes within T. reesei, a flexible polyglycine linker and a rigid α-helix linker were tested in the construction of fusion genes between cbh1 from T. reesei and e1, encoding an endoglucanase from Acidothermus cellulolyticus.ResultsThe modified promoter resulted in an increased expression level of the green fluorescent protein reporter by 5.5-fold in inducing culture medium and 7.4-fold in repressing culture medium. The fusion genes of cbh1 and e1 were successfully expressed in T. reesei under the control of promoter pcbh1m2. The higher enzyme activities and thermostability of the fusion protein with rigid linker indicated that the rigid linker might be more suitable for the heterologous expression system in T. reesei. Compared to the parent strain RC30-8, the FPase and CMCase activities of the secreted enzyme mixture from the corresponding transformant R1 with the rigid linker increased by 39% and 30% at 60°C, respectively, and the reduced sugar concentration in the hydrolysate of pretreated corn stover (PCS) was dramatically increased by 40% at 55°C and 169% at 60°C when its enzyme mixture was used in the hydrolysis.ConclusionsThis study shows that optimizations of the promoter and linker for hybrid genes can dramatically improve the efficiency of heterologous expression of cellulase genes in T. reesei.


Nature Communications | 2010

Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains

André B. Canelas; Nicola Harrison; Alessandro Fazio; Jie Zhang; Juha-Pekka Pitkänen; Joost van den Brink; Barbara M. Bakker; Lara Bogner; J. Bouwman; Juan I. Castrillo; Ayca Cankorur; Pramote Chumnanpuen; Pascale Daran-Lapujade; Duygu Dikicioglu; Karen van Eunen; Jennifer C. Ewald; Joseph J. Heijnen; Betul Kirdar; Ismo Mattila; F.I.C. Mensonides; Anja Niebel; Merja Penttilä; Jack T. Pronk; Matthias Reuss; Laura Salusjärvi; Uwe Sauer; David James Sherman; Martin Siemann-Herzberg; Hans V. Westerhoff; Johannes H. de Winde

The field of systems biology is often held back by difficulties in obtaining comprehensive, high-quality, quantitative data sets. In this paper, we undertook an interlaboratory effort to generate such a data set for a very large number of cellular components in the yeast Saccharomyces cerevisiae, a widely used model organism that is also used in the production of fuels, chemicals, food ingredients and pharmaceuticals. With the current focus on biofuels and sustainability, there is much interest in harnessing this species as a general cell factory. In this study, we characterized two yeast strains, under two standard growth conditions. We ensured the high quality of the experimental data by evaluating a wide range of sampling and analytical techniques. Here we show significant differences in the maximum specific growth rate and biomass yield between the two strains. On the basis of the integrated analysis of the high-throughput data, we hypothesize that differences in phenotype are due to differences in protein metabolism.


BMC Genomics | 2011

Carbohydrate-active enzymes from the zygomycete fungus Rhizopus oryzae: a highly specialized approach to carbohydrate degradation depicted at genome level

Evy Battaglia; Isabelle Benoit; Joost van den Brink; Ad Wiebenga; Pedro M. Coutinho; Bernard Henrissat; Ronald P. de Vries

BackgroundRhizopus oryzae is a zygomycete filamentous fungus, well-known as a saprobe ubiquitous in soil and as a pathogenic/spoilage fungus, causing Rhizopus rot and mucomycoses.ResultsCarbohydrate Active enzyme (CAZy) annotation of the R. oryzae identified, in contrast to other filamentous fungi, a low number of glycoside hydrolases (GHs) and a high number of glycosyl transferases (GTs) and carbohydrate esterases (CEs). A detailed analysis of CAZy families, supported by growth data, demonstrates highly specialized plant and fungal cell wall degrading abilities distinct from ascomycetes and basidiomycetes. The specific genomic and growth features for degradation of easily digestible plant cell wall mono- and polysaccharides (starch, galactomannan, unbranched pectin, hexose sugars), chitin, chitosan, β-1,3-glucan and fungal cell wall fractions suggest specific adaptations of R. oryzae to its environment.ConclusionsCAZy analyses of the genome of the zygomycete fungus R. oryzae and comparison to ascomycetes and basidiomycete species revealed how evolution has shaped its genetic content with respect to carbohydrate degradation, after divergence from the Ascomycota and Basidiomycota.


Applied and Environmental Microbiology | 2008

Dynamics of Glycolytic Regulation during Adaptation of Saccharomyces cerevisiae to Fermentative Metabolism

Joost van den Brink; André B. Canelas; Walter M. van Gulik; Jack T. Pronk; Joseph J. Heijnen; Johannes H. de Winde; Pascale Daran-Lapujade

ABSTRACT The ability of bakers yeast (Saccharomyces cerevisiae) to rapidly increase its glycolytic flux upon a switch from respiratory to fermentative sugar metabolism is an important characteristic for many of its multiple industrial applications. An increased glycolytic flux can be achieved by an increase in the glycolytic enzyme capacities (V max) and/or by changes in the concentrations of low-molecular-weight substrates, products, and effectors. The goal of the present study was to understand the time-dependent, multilevel regulation of glycolytic enzymes during a switch from fully respiratory conditions to fully fermentative conditions. The switch from glucose-limited aerobic chemostat growth to full anaerobiosis and glucose excess resulted in rapid acceleration of fermentative metabolism. Although the capacities (V max) of the glycolytic enzymes did not change until 45 min after the switch, the intracellular levels of several substrates, products, and effectors involved in the regulation of glycolysis did change substantially during the initial 45 min (e.g., there was a buildup of the phosphofructokinase activator fructose-2,6-bisphosphate). This study revealed two distinct phases in the upregulation of glycolysis upon a switch to fermentative conditions: (i) an initial phase, in which regulation occurs completely through changes in metabolite levels; and (ii) a second phase, in which regulation is achieved through a combination of changes in V max and metabolite concentrations. This multilevel regulation study qualitatively explains the increase in flux through the glycolytic enzymes upon a switch of S. cerevisiae to fermentative conditions and provides a better understanding of the roles of different regulatory mechanisms that influence the dynamics of yeast glycolysis.


Biotechnology for Biofuels | 2015

Closely related fungi employ diverse enzymatic strategies to degrade plant biomass

Isabelle Benoit; Helena Culleton; Miaomiao Zhou; Marcos DiFalco; Guillermo Aguilar-Osorio; Evy Battaglia; Ourdia Bouzid; Carlo P J M Brouwer; Hala B O El-Bushari; Pedro M. Coutinho; Birgit S. Gruben; Kristiina Hildén; Jos Houbraken; Luis Alexis Jiménez Barboza; Anthony Levasseur; Eline Majoor; Miia R. Mäkelä; Hari Mander Narang; Blanca Trejo-Aguilar; Joost van den Brink; Patricia A. vanKuyk; Ad Wiebenga; Vincent A. McKie; Barry V. McCleary; Adrian Tsang; Bernard Henrissat; Ronald P. de Vries

BackgroundPlant biomass is the major substrate for the production of biofuels and biochemicals, as well as food, textiles and other products. It is also the major carbon source for many fungi and enzymes of these fungi are essential for the depolymerization of plant polysaccharides in industrial processes. This is a highly complex process that involves a large number of extracellular enzymes as well as non-hydrolytic proteins, whose production in fungi is controlled by a set of transcriptional regulators. Aspergillus species form one of the best studied fungal genera in this field, and several species are used for the production of commercial enzyme cocktails.ResultsIt is often assumed that related fungi use similar enzymatic approaches to degrade plant polysaccharides. In this study we have compared the genomic content and the enzymes produced by eight Aspergilli for the degradation of plant biomass. All tested Aspergilli have a similar genomic potential to degrade plant biomass, with the exception of A. clavatus that has a strongly reduced pectinolytic ability. Despite this similar genomic potential their approaches to degrade plant biomass differ markedly in the overall activities as well as the specific enzymes they employ. While many of the genes have orthologs in (nearly) all tested species, only very few of the corresponding enzymes are produced by all species during growth on wheat bran or sugar beet pulp. In addition, significant differences were observed between the enzyme sets produced on these feedstocks, largely correlating with their polysaccharide composition.ConclusionsThese data demonstrate that Aspergillus species and possibly also other related fungi employ significantly different approaches to degrade plant biomass. This makes sense from an ecological perspective where mixed populations of fungi together degrade plant biomass. The results of this study indicate that combining the approaches from different species could result in improved enzyme mixtures for industrial applications, in particular saccharification of plant biomass for biofuel production. Such an approach may result in a much better improvement of saccharification efficiency than adding specific enzymes to the mixture of a single fungus, which is currently the most common approach used in biotechnology.


Biotechnology for Biofuels | 2016

Polygenic analysis and targeted improvement of the complex trait of high acetic acid tolerance in the yeast Saccharomyces cerevisiae.

Jean-Paul Meijnen; Paola Randazzo; Maria R. Foulquié-Moreno; Joost van den Brink; Paul Vandecruys; Marija Stojiljkovic; Françoise Dumortier; Teun Boekhout; Nina Gunde-Cimerman; Janez Kokošar; Miha Štajdohar; Tomaž Curk; Uroš Petrovič; Johan M. Thevelein

BackgroundAcetic acid is one of the major inhibitors in lignocellulose hydrolysates used for the production of second-generation bioethanol. Although several genes have been identified in laboratory yeast strains that are required for tolerance to acetic acid, the genetic basis of the high acetic acid tolerance naturally present in some Saccharomyces cerevisiae strains is unknown. Identification of its polygenic basis may allow improvement of acetic acid tolerance in yeast strains used for second-generation bioethanol production by precise genome editing, minimizing the risk of negatively affecting other industrially important properties of the yeast.ResultsHaploid segregants of a strain with unusually high acetic acid tolerance and a reference industrial strain were used as superior and inferior parent strain, respectively. After crossing of the parent strains, QTL mapping using the SNP variant frequency determined by pooled-segregant whole-genome sequence analysis revealed two major QTLs. All F1 segregants were then submitted to multiple rounds of random inbreeding and the superior F7 segregants were submitted to the same analysis, further refined by sequencing of individual segregants and bioinformatics analysis taking into account the relative acetic acid tolerance of the segregants. This resulted in disappearance in the QTL mapping with the F7 segregants of a major F1 QTL, in which we identified HAA1, a known regulator of high acetic acid tolerance, as a true causative allele. Novel genes determining high acetic acid tolerance, GLO1, DOT5, CUP2, and a previously identified component, VMA7, were identified as causative alleles in the second major F1 QTL and in three newly appearing F7 QTLs, respectively. The superior HAA1 allele contained a unique single point mutation that significantly improved acetic acid tolerance under industrially relevant conditions when inserted into an industrial yeast strain for second-generation bioethanol production.ConclusionsThis work reveals the polygenic basis of high acetic acid tolerance in S. cerevisiae in unprecedented detail. It also shows for the first time that a single strain can harbor different sets of causative genes able to establish the same polygenic trait. The superior alleles identified can be used successfully for improvement of acetic acid tolerance in industrial yeast strains.


Fungal Diversity | 2012

Phylogeny of the industrial relevant, thermophilic genera Myceliophthora and Corynascus

Joost van den Brink; Robert A. Samson; Ferry Hagen; Teun Boekhout; Ronald P. de Vries

Species of the genus Myceliophthora and its teleomorph Corynascus have attracted increasing interest due to their potential to produce thermostable enzymes. This study re-assessed the phylogenetic relationship of 49 isolates of nine species belonging to Myceliophthora and Corynascus. One species, M. vellerea, was shown not to belong to the genus Myceliophthora and should be placed in the genus Ctenomyces. The other species belonged to two phylogenetic clusters: mesophilic fungi with the type species M. lutea and C. sepedonium, and thermophilic fungi with M. thermophila, M. hinnulea and C. thermophilus. The phylogenetic data provides no clear separation of the two genera Corynascus and Myceliophthora. To avoid confusion in future taxonomic studies, it is proposed that all existing Corynascus species be renamed to Myceliophthora, which is the old name and the one more frequently used. Furthermore, this study identified two groups within the isolates listed as M. thermophila and assigned one group (five isolates) to M. heterothallica based on AFLP analysis and mating behavior. This study provides new insights into the genetic differences within the genus Myceliophthora and will therefore be essential for the interpretation of future genomic and physiological studies of these species.

Collaboration


Dive into the Joost van den Brink's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jack T. Pronk

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johannes H. de Winde

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pascale Daran-Lapujade

Delft University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge