Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jordan M. Joy is active.

Publication


Featured researches published by Jordan M. Joy.


Nutrition Journal | 2014

Comparative absorption of curcumin formulations

Ralf Jäger; Ryan P. Lowery; Allison V Calvanese; Jordan M. Joy; Martin Purpura; Jacob M. Wilson

BackgroundThe potential health benefits of curcumin are limited by its poor solubility, low absorption from the gut, rapid metabolism and rapid systemic elimination. The purpose of this study was the comparative measurement of the increases in levels of curcuminoids (curcumin, demethoxycurcumin, bisdemethoxycurcumin) and the metabolite tetrahydrocurcumin after oral administration of three different curcumin formulations in comparison to unformulated standard.MethodsThe relative absorption of a curcumin phytosome formulation (CP), a formulation with volatile oils of turmeric rhizome (CTR) and a formulation of curcumin with a combination of hydrophilic carrier, cellulosic derivatives and natural antioxidants (CHC) in comparison to a standardized curcumin mixture (CS) was investigated in a randomized, double-blind, crossover human study in healthy volunteers. Samples were analyzed by HPLC-MS/MS.ResultsTotal curcuminoids appearance in the blood was 1.3-fold higher for CTR and 7.9-fold higher for CP in comparison to unformulated CS. CHC showed a 45.9-fold higher absorption over CS and significantly improved absorption over CP (5.8-fold) and CTR (34.9-fold, all p < 0.001).ConclusionA formulation of curcumin with a combination of hydrophilic carrier, cellulosic derivatives and natural antioxidants significantly increases curcuminoid appearance in the blood in comparison to unformulated standard curcumin CS, CTR and CP.


British Journal of Nutrition | 2013

β-Hydroxy-β-methylbutyrate free acid reduces markers of exercise-induced muscle damage and improves recovery in resistance-trained men.

Jacob M. Wilson; Ryan P. Lowery; Jordan M. Joy; Joe A. Walters; Shawn Baier; John C. Fuller; Jeffrey R. Stout; Layne E. Norton; Eric M. Sikorski; Stephanie Mc Wilson; Nevine M. Duncan; Nelo E. Zanchi; John Rathmacher

The purpose of the present study was to determine the effects of short-term supplementation with the free acid form of b-hydroxyb-methylbutyrate (HMB-FA) on indices of muscle damage, protein breakdown, recovery and hormone status following a high-volume resistance training session in trained athletes. A total of twenty resistance-trained males were recruited to participate in a high-volume resistance training session centred on full squats, bench presses and dead lifts. Subjects were randomly assigned to receive either 3 g/d of HMB-FA or a placebo. Immediately before the exercise session and 48 h post-exercise, serum creatine kinase (CK), urinary 3-methylhistadine (3-MH), testosterone, cortisol and perceived recovery status (PRS) scale measurements were taken. The results showed that CK increased to a greater extent in the placebo (329%) than in the HMB-FA group (104%) (P¼0·004, d ¼ 1·6). There was also a significant change for PRS, which decreased to a greater extent in the placebo (9·1 (SEM 0·4) to 4·6 (SEM 0·5)) than in the HMB-FA group (9·1 (SEM 0·3) to 6·3 (SEM 0·3)) (P¼0·005, d ¼ 20·48). Muscle protein breakdown, measured by 3-MH analysis, numerically decreased with HMB-FA supplementation and approached significance (P¼0·08, d ¼ 0·12). There were no acute changes in plasma total or free testosterone, cortisol or C-reactive protein. In conclusion, these results suggest that an HMB-FA supplement given to trained athletes before exercise can blunt increases in muscle damage and prevent declines in perceived readiness to train following a high-volume, muscle-damaging resistance-training session.


Journal of Strength and Conditioning Research | 2013

PRACTICAL BLOOD FLOW RESTRICTION TRAINING INCREASES ACUTE DETERMINANTS OF HYPERTROPHY WITHOUT INCREASING INDICES OF MUSCLE DAMAGE

Jacob M. Wilson; Ryan P. Lowery; Jordan M. Joy; Jeremy P. Loenneke; Marshall A. Naimo

Abstract Wilson, JM, Lowery, RP, Joy, JM, Loenneke, JP, and Naimo, MA. Practical blood flow restriction training increases acute determinants of hypertrophy without increasing indices of muscle damage. J Strength Cond Res 27(11): 3068–3075, 2013—Vascular blood flow restriction (BFR) training stimulates muscle hypertrophy by increasing muscle activation and muscle swelling. Previous studies used expensive pneumatic cuffs, which may not be practical for regular use. The aim was to investigate the acute effects of low-intensity practical BFR (LI-pBFR) on muscle activation, muscle swelling, and damage. Twelve trained male participants completed a 30-, 15-, 15-, 15-repetition scheme at 30% of their leg press 1-repetition maximum under control and LI-BFR conditions. Under the LI-BFR trial, knee wraps were applied to the thighs at a pressure that resulted in venous, not arterial, occlusion. In the control trial, wraps were applied with zero pressure. Ultrasound-determined muscle thickness was recorded at baseline; 0 minutes post with wraps; 0, 5, and 10 minutes post without wraps. Muscle activation was recorded during warm-ups and on the final set of 15 repetitions. Indices of muscle damage (soreness, power, and muscle swelling) were also recorded. There was a condition by time effect for muscle thickness (p < 0.0001, effect size [ES] = 0.5), in which muscle thickness increased in the LI-pBFR condition 0 minutes post with wraps and through 5 minutes post without wraps. No changes occurred in the control. There was a condition by time effect for muscle activation (p < 0.05, ES = 0.2). The LI-pBFR had greater activation than the control did. There were no condition by time effects on indices of muscle damage. Our data indicate that practical BFR significantly increases muscle activation and muscle thickness without increasing indices of damage.


Clinical Physiology and Functional Imaging | 2014

Practical blood flow restriction training increases muscle hypertrophy during a periodized resistance training programme

Ryan P. Lowery; Jordan M. Joy; Jeremy P. Loenneke; Eduardo Oliveira de Souza; Marco Machado; Joshua E Dudeck; Jacob M. Wilson

Resistance training in combination with practical blood flow restriction (pBFR) is thought to stimulate muscle hypertrophy by increasing muscle activation and muscle swelling. Most previous studies used the KAATSU device; however, little long‐term research has been completed using pBFR.


Nutrition & Metabolism | 2013

Effects of oral adenosine-5'-triphosphate supplementation on athletic performance, skeletal muscle hypertrophy and recovery in resistance-trained men

Jacob M. Wilson; Jordan M. Joy; Ryan P. Lowery; Michael D. Roberts; Christopher M. Lockwood; Anssi H Manninen; John C. Fuller; Eduardo Oliveira de Souza; Shawn Baier; Stephanie Mc Wilson; John Rathmacher

BackgroundCurrently, there is a lack of studies examining the effects of adenosine-5′-triphosphate (ATP) supplementation utilizing a long-term, periodized resistance-training program (RT) in resistance-trained populations. Therefore, we investigated the effects of 12 weeks of 400 mg per day of oral ATP on muscular adaptations in trained individuals. We also sought to determine the effects of ATP on muscle protein breakdown, cortisol, and performance during an overreaching cycle.MethodsThe study was a 3-phase randomized, double-blind, and placebo- and diet-controlled intervention. Phase 1 was a periodized resistance-training program. Phase 2 consisted of a two week overreaching cycle in which volume and frequency were increased followed by a 2-week taper (Phase 3). Muscle mass, strength, and power were examined at weeks 0, 4, 8, and 12 to assess the chronic effects of ATP; assessment performance variables also occurred at the end of weeks 9 and 10, corresponding to the mid and endpoints of the overreaching cycle.ResultsThere were time (p < 0.001), and group x time effects for increased total body strength (+55.3 ± 6.0 kg ATP vs. + 22.4 ± 7.1 kg placebo, p < 0.001); increased vertical jump power (+ 796 ± 75 ATP vs. 614 ± 52 watts placebo, p < 0.001); and greater ultrasound determined muscle thickness (+4.9 ± 1.0 ATP vs. (2.5 ± 0.6 mm placebo, p < 0.02) with ATP supplementation. During the overreaching cycle, there were group x time effects for strength and power, which decreased to a greater extent in the placebo group. Protein breakdown was also lower in the ATP group.ConclusionsOur results suggest oral ATP supplementation may enhance muscular adaptations following 12-weeks of resistance training, and prevent decrements in performance following overreaching. No statistically or clinically significant changes in blood chemistry or hematology were observed.Trial registrationClinicalTrials.gov NCT01508338


Journal of Strength and Conditioning Research | 2013

Changes in perceived recovery status scale following high-volume muscle damaging resistance exercise.

Eric M. Sikorski; Jacob M. Wilson; Ryan P. Lowery; Jordan M. Joy; Matthew C. Laurent; Stephanie Mc Wilson; Domini Hesson; Marshall A. Naimo; Brian Averbuch; Phil Gilchrist

Abstract Sikorski, EM, Wilson, JM, Lowery, RP, Joy, JM, Laurent, CM, Wilson, SM-C, Hesson, D, Naimo, MA, Averbuch, B, and Gilchrist, P. Changes in perceived recovery status scale following high-volume muscle damaging resistance Exercise. J Strength Cond Res 27(8): 2079–2085, 2013—Currently no research has investigated the relationship between muscle damage, hormonal status, and perceived recovery scale (PRS). Therefore, the purpose of this study was to determine the effects of a high-volume training session on PRS and to determine the relationship between levels of testosterone, cortisol, and creatine kinase (CK) and PRS. Thirty-five trained subjects (21.3 ± 1.9 years) were recruited. All subjects participated in a high-volume resistance training session consisting of 3 sets of full squats, bench press, deadlifts, pullups, dips, bent over rows, shoulder press, and barbell curls and extensions. Pre-PRS and post-PRS measurements (0–10), soreness, CK, cortisol, and testosterone were measured before and 48 hours after training. Perceived recovery scale declined from 8.6 ± 2.3 to 4.2 ± 1.85 (p < 0.05). Leg, chest, and arm soreness increased from pre- to postexercise. Creatine kinase significantly increased from pre- to postworkout (189.4 ± 100.2 to 512 ± 222.7 U/L). Cortisol, testosterone, and free testosterone did not change. There was an inverse relationship between CK and PRS (r2 = 0.58, p < 0.05). When muscle damage was low before training, cortisol and free and total testosterone were not correlated to PRS. However, when damage peaked at 48 hours postexercise, free, but not total, testosterone showed a low direct relationship with PRS (r2 = 0.2, p < 0.05). High-volume resistance exercise lowers PRS scores. These changes are partly explained by a rise in serum indices of muscle damage. Moreover, free testosterone seems to have a positive relationship with PRS.


Journal of Strength and Conditioning Research | 2016

Interaction of Beta-Hydroxy-Beta-Methylbutyrate Free Acid and Adenosine Triphosphate on Muscle Mass, Strength, and Power in Resistance Trained Individuals.

Ryan P. Lowery; Jordan M. Joy; John Rathmacher; Shawn Baier; John C. Fuller; Mack C. Shelley; Ralf Jäger; Martin Purpura; Stephanie Mc Wilson; Jacob M. Wilson

Abstract Lowery, RP, Joy, JM, Rathmacher, JA, Baier, SM, Fuller, JC Jr, Shelley, MC II, Jäger, R, Purpura, M, Wilson, SMC, and Wilson, JM. Interaction of beta-hydroxy-beta-methylbutyrate free acid and adenosine triphosphate on muscle mass, strength, and power in resistance trained individuals. J Strength Cond Res 30(7): 1843–1854, 2016—Adenosine-5′-triphosphate (ATP) supplementation helps maintain performance under high fatiguing contractions and with greater fatigue recovery demands also increase. Current evidence suggests that the free acid form of &bgr;-hydroxy-&bgr;-methylbutyrate (HMB-FA) acts by speeding regenerative capacity of skeletal muscle after high-intensity or prolonged exercise. Therefore, we investigated the effects of 12 weeks of HMB-FA (3 g) and ATP (400 mg) administration on lean body mass (LBM), strength, and power in trained individuals. A 3-phase double-blind, placebo-, and diet-controlled study was conducted. Phases consisted of an 8-week periodized resistance training program (phase 1), followed by a 2-week overreaching cycle (phase 2), and a 2-week taper (phase 3). Lean body mass was increased by a combination of HMB-FA/ATP by 12.7% (p < 0.001). In a similar fashion, strength gains after training were increased in HMB-FA/ATP-supplemented subjects by 23.5% (p < 0.001). Vertical jump and Wingate power were increased in the HMB-FA/ATP-supplemented group compared with the placebo-supplemented group, and the 12-week increases were 21.5 and 23.7%, respectively. During the overreaching cycle, strength and power declined in the placebo group (4.3–5.7%), whereas supplementation with HMB-FA/ATP resulted in continued strength gains (1.3%). In conclusion, HMB-FA and ATP in combination with resistance exercise training enhanced LBM, power, and strength. In addition, HMB-FA plus ATP blunted the typical response to overreaching, resulting in a further increase in strength during that period. It seems that the combination of HMB-FA/ATP could benefit those who continuously train at high levels such as elite athletes or military personnel.


Nutrition Research | 2014

Ingesting a preworkout supplement containing caffeine, creatine, β-alanine, amino acids, and B vitamins for 28 days is both safe and efficacious in recreationally active men

Kristina L. Kendall; Jordan R. Moon; Ciaran M. Fairman; Brandon D. Spradley; Chih-Yin Tai; Paul H. Falcone; Laura R. Carson; Matt M. Mosman; Jordan M. Joy; Michael P. Kim; Eric R. Serrano; Enrico N. Esposito

The purpose of this study was to determine the safety and efficacy of consuming a preworkout supplement (SUP) containing caffeine, creatine, β-alanine, amino acids, and B vitamins for 28 days. We hypothesized that little to no changes in kidney and liver clinical blood markers or resting heart rate and blood pressure (BP) would be observed. In addition, we hypothesized that body composition and performance would improve in recreationally active males after 28 days of supplementation. In a double-blind, placebo-controlled study, participants were randomly assigned to ingest one scoop of either the SUP or placebo every day for 28 days, either 20 minutes before exercise or ad libitum on nonexercise days. Resting heart rate and BP, body composition, and fasting blood samples were collected before and after supplementation. Aerobic capacity as well as muscular strength and endurance were also measured. Significant (P < .05) main effects for time were observed for resting heart rate (presupplementation, 67.59 ± 7.90 beats per minute; postsupplementation, 66.18 ± 7.63 beats per minute), systolic BP (presupplementation, 122.41 ± 11.25 mm Hg; postsupplementation, 118.35 ± 11.58 mm Hg), blood urea nitrogen (presupplementation, 13.12 ± 2.55 mg/dL; postsupplementation, 15.24 ± 4.47 mg/dL), aspartate aminotransferase (presupplementation, 34.29 ± 16.48 IU/L; postsupplementation, 24.76 ± 4.71 IU/L), and alanine aminotransferase (presupplementation, 32.76 ± 19.72 IU/L; postsupplementation, 24.88 ± 9.68 IU/L). Significant main effects for time were observed for body fat percentage (presupplementation, 15.55% ± 5.79%; postsupplementation, 14.21% ± 5.38%; P = .004) and fat-free mass (presupplementation, 70.80 ± 9.21 kg; postsupplementation, 71.98 ± 9.27 kg; P = .006). A significant decrease in maximal oxygen consumption (presupplementation, 47.28 ± 2.69 mL/kg per minute; postsupplementation, 45.60 ± 2.81 mL/kg per minute) and a significant increase in percentage of oxygen consumption per unit time at which ventilatory threshold occurred (presupplementation, 64.38% ± 6.63%; postsupplementation, 70.63% ± 6.39%) and leg press one-repetition maximum (presupplementation, 218.75 ± 38.43 kg; postsupplementation, 228.75 ± 44.79 kg) were observed in the SUP only. No adverse effects were noted for renal and hepatic clinical blood markers, resting heart rate, or BP. Supplements containing similar ingredients and doses should be safe for ingestion periods lasting up to 28 days in healthy, recreationally trained, college-aged men.


Journal of The International Society of Sports Nutrition | 2014

Oral adenosine-5'-triphosphate (ATP) administration increases blood flow following exercise in animals and humans.

Ralf Jäger; Michael D. Roberts; Ryan P. Lowery; Jordan M. Joy; Clayton L. Cruthirds; Christopher M. Lockwood; John Rathmacher; Martin Purpura; Jacob M. Wilson

IntroductionExtracellular adenosine triphosphate (ATP) stimulates vasodilation by binding to endothelial ATP-selective P2Y2 receptors; a phenomenon, which is posited to be accelerated during exercise. Herein, we used a rat model to examine how different dosages of acute oral ATP administration affected the femoral blood flow response prior to, during, and after an exercise bout. In addition, we performed a single dose chronic administration pilot study in resistance trained athletes.MethodsAnimal study: Male Wistar rats were gavage-fed the body surface area, species adjusted human equivalent dose (HED) of either 100 mg (n=4), 400 mg (n=4), 1,000 mg (n=5) or 1,600 mg (n=5) of oral ATP as a disodium salt (Peak ATP®, TSI, Missoula, MT). Rats that were not gavage-fed were used as controls (CTL, n=5). Blood flow was monitored continuously: a) 60 min prior to, b) during and c) 90 min following an electrically-evoked leg-kicking exercise. Human Study: In a pilot study, 12 college-aged resistance-trained subjects were given 400 mg of ATP (Peak ATP®, TSI, Missoula, MT) daily for 12 weeks, and prior to an acute arm exercise bout at weeks 1, 4, 8, and 12. Ultrasonography-determined volumetric blood flow and vessel dilation in the brachial artery was measured at rest, at rest 30 minutes after supplementation, and then at 0, 3, and 6 minutes after the exercise.ResultsAnimal Study: Rats fed 1,000 mg HED demonstrated significantly greater recovery blood flow (p < 0.01) and total blood flow AUC values (p < 0.05) compared to CTL rats. Specifically, blood flow was elevated in rats fed 1,000 mg HED versus CTL rats at 20 to 90 min post exercise when examining 10-min blood flow intervals (p < 0.05). When examining within-group differences relative to baseline values, rats fed the 1,000 mg and 1,600 mg HED exhibited the most robust increases in blood flow during exercise and into the recovery period. Human study: At weeks 1, 8, and 12, ATP supplementation significantly increased blood flow, along with significant elevations in brachial dilation.ConclusionsOral ATP administration can increase post-exercise blood flow, and may be particularly effective during exercise recovery.


International Journal of Sports Medicine | 2014

High-intensity interval training has positive effects on performance in ice hockey players.

M. A. Naimo; E. O. de Souza; Jacob M. Wilson; A. L. Carpenter; P. Gilchrist; Ryan P. Lowery; B. Averbuch; T. M. White; Jordan M. Joy

In spite of the well-known benefits that have been shown, few studies have looked at the practical applications of high-intensity interval training (HIIT) on athletic performance. This study investigated the effects of a HIIT program compared to traditional continuous endurance exercise training. 24 hockey players were randomly assigned to either a continuous or high-intensity interval group during a 4-week training program. The interval group (IG) was involved in a periodized HIIT program. The continuous group (CG) performed moderate intensity cycling for 45-60 min at an intensity that was 65% of their calculated heart rate reserve. Body composition, muscle thickness, anaerobic power, and on-ice measures were assessed pre- and post-training. Muscle thickness was significantly greater in IG (p=0.01) when compared to CG. The IG had greater values for both ∆ peak power (p<0.003) and ∆ mean power (p<0.02). Additionally, IG demonstrated a faster ∆ sprint (p<0.02) and a trend (p=0.08) for faster ∆ endurance test time to completion for IG. These results indicate that hockey players may utilize short-term HIIT to elicit positive effects in muscle thickness, power and on-ice performance.

Collaboration


Dive into the Jordan M. Joy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jordan R. Moon

United States Sports Academy

View shared research outputs
Top Co-Authors

Avatar

Michael P. Kim

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chih-Yin Tai

United States Sports Academy

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge