Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Purpura is active.

Publication


Featured researches published by Martin Purpura.


Nutrition Journal | 2014

Comparative absorption of curcumin formulations

Ralf Jäger; Ryan P. Lowery; Allison V Calvanese; Jordan M. Joy; Martin Purpura; Jacob M. Wilson

BackgroundThe potential health benefits of curcumin are limited by its poor solubility, low absorption from the gut, rapid metabolism and rapid systemic elimination. The purpose of this study was the comparative measurement of the increases in levels of curcuminoids (curcumin, demethoxycurcumin, bisdemethoxycurcumin) and the metabolite tetrahydrocurcumin after oral administration of three different curcumin formulations in comparison to unformulated standard.MethodsThe relative absorption of a curcumin phytosome formulation (CP), a formulation with volatile oils of turmeric rhizome (CTR) and a formulation of curcumin with a combination of hydrophilic carrier, cellulosic derivatives and natural antioxidants (CHC) in comparison to a standardized curcumin mixture (CS) was investigated in a randomized, double-blind, crossover human study in healthy volunteers. Samples were analyzed by HPLC-MS/MS.ResultsTotal curcuminoids appearance in the blood was 1.3-fold higher for CTR and 7.9-fold higher for CP in comparison to unformulated CS. CHC showed a 45.9-fold higher absorption over CS and significantly improved absorption over CP (5.8-fold) and CTR (34.9-fold, all p < 0.001).ConclusionA formulation of curcumin with a combination of hydrophilic carrier, cellulosic derivatives and natural antioxidants significantly increases curcuminoid appearance in the blood in comparison to unformulated standard curcumin CS, CTR and CP.


Journal of The International Society of Sports Nutrition | 2007

Phospholipids and sports performance.

Ralf Jäger; Martin Purpura; Michael Kingsley

Phospholipids are essential components of all biological membranes. Phosphatidylcholine (PC) and Phosphatidylserine (PS) are Phosphatidyl-phospholipids that are required for normal cellular structure and function. The participation in physical activity often challenges a variety of physiological systems; consequently, the ability to maintain normal cellular function during activity can determine sporting performance. The participation in prolonged intense exercise has been shown to reduce circulatory choline concentrations in some individuals. As choline is a pre-cursor to the neurotransmitter Acetylcholine, this finding has encouraged researchers to investigate the hypothesis that supplementation with PC (or choline salts) could enhance sporting performance. Although the available data that evaluates the effects of PC supplementation on performance are equivocal, acute oral supplementation with PC (~0.2 g PC per kg body mass) has been demonstrated to improve performance in a variety of sporting activities where exercise has depleted circulatory choline concentrations. Short term oral supplementation with soy-derived PS (S-PS) has been reported to attenuate circulating cortisol concentrations, improve perceived well-being, and reduce perceived muscle soreness after exercise. More recently, short term oral supplementation (750 mg per day of S-PS for 10 days) has been demonstrated to improve exercise capacity during high intensity cycling and tended to increase performance during intermittent running. Although more research is warranted to determine minimum dietary Phospholipid requirements for optimal sporting performance, these findings suggest that some participants might benefit from dietary interventions that increase the intakes of PC and PS.


Amino Acids | 2011

Analysis of the efficacy, safety, and regulatory status of novel forms of creatine

Ralf Jäger; Martin Purpura; Andrew Shao; Toshitada Inoue; Richard B. Kreider

Creatine has become one of the most popular dietary supplements in the sports nutrition market. The form of creatine that has been most extensively studied and commonly used in dietary supplements is creatine monohydrate (CM). Studies have consistently indicated that CM supplementation increases muscle creatine and phosphocreatine concentrations by approximately 15–40%, enhances anaerobic exercise capacity, and increases training volume leading to greater gains in strength, power, and muscle mass. A number of potential therapeutic benefits have also been suggested in various clinical populations. Studies have indicated that CM is not degraded during normal digestion and that nearly 99% of orally ingested CM is either taken up by muscle or excreted in urine. Further, no medically significant side effects have been reported in literature. Nevertheless, supplement manufacturers have continually introduced newer forms of creatine into the marketplace. These newer forms have been purported to have better physical and chemical properties, bioavailability, efficacy, and/or safety profiles than CM. However, there is little to no evidence that any of the newer forms of creatine are more effective and/or safer than CM whether ingested alone and/or in combination with other nutrients. In addition, whereas the safety, efficacy, and regulatory status of CM is clearly defined in almost all global markets; the safety, efficacy, and regulatory status of other forms of creatine present in today’s marketplace as a dietary or food supplement is less clear.


Journal of The International Society of Sports Nutrition | 2008

The effects of phosphatidylserine on endocrine response to moderate intensity exercise

Michael A Starks; Stacy L Starks; Michael Kingsley; Martin Purpura; Ralf Jäger

BackgroundPrevious research has indicated that phosphatidylserine (PS) supplementation has the potential to attenuate the serum cortisol response to acute exercise stress. Equivocal findings suggest that this effect might be dose dependent. This study aimed to examine the influence of short-term supplementation with a moderate dose of PS (600 mg per day) on plasma concentrations of cortisol, lactate, growth hormone and testosterone before, during, and following moderate intensity exercise in healthy males.Methods10 healthy male subjects participated in the study. Each subject was assigned to ingest 600 mg PS or placebo per day for 10 days using a double-blind, placebo-controlled, crossover design. Serial venous blood samples were taken at rest, after a 15 minute moderate intensity exercise protocol on a cycle ergometer that consisted of five 3-minute incremental stages beginning at 65% and ending at 85% VO2 max, and during a 65 minute passive recovery. Plasma samples were assessed for cortisol, growth hormone, testosterone, lactate and testosterone to cortisol ratio for treatment (PS or placebo).ResultsMean peak cortisol concentrations and area under the curve (AUC) were lower following PS (39 ± 1% and 35 ± 0%, respectively) when compared to placebo (p < 0.05). PS increased AUC for testosterone to cortisol ratio (184 ± 5%) when compared to placebo (p < 0.05). PS and placebo supplementation had no effect on lactate or growth hormone levels.ConclusionThe findings suggest that PS is an effective supplement for combating exercise-induced stress and preventing the physiological deterioration that can accompany too much exercise. PS supplementation promotes a desired hormonal status for athletes by blunting increases in cortisol levels.


Journal of The International Society of Sports Nutrition | 2012

Efficacy of phosphatidic acid ingestion on lean body mass, muscle thickness and strength gains in resistance-trained men

Jay R. Hoffman; Jeffrey R. Stout; David R Williams; Adam J. Wells; Maren S. Fragala; Gerald T. Mangine; Adam M. Gonzalez; Nadia S. Emerson; William P. McCormack; Tyler C. Scanlon; Martin Purpura; Ralf Jäger

BackgroundPhosphatidic acid (PA) has been reported to activate the mammalian target of rapamycin (mTOR) signaling pathway and is thought to enhance the anabolic effects of resistance training. The purpose of this pilot study was to examine if oral phosphatidic acid administration can enhance strength, muscle thickness and lean tissue accruement during an 8-week resistance training program.MethodsSixteen resistance-trained men were randomly assigned to a group that either consumed 750 mg of PA (n = 7, 23.1 ± 4.4 y; 176.7 ± 6.7 cm; 86.5 ± 21.2 kg) or a placebo (PL, n = 9, 22.5 ± 2.0 y; 179.8 ± 5.4 cm; 89.4 ± 13.6 kg) group. During each testing session subjects were assessed for strength (one repetition maximum [1-RM] bench press and squat) and body composition. Muscle thickness and pennation angle were also measured in the vastus lateralis of the subject’s dominant leg.ResultsSubjects ingesting PA demonstrated a 12.7% increase in squat strength and a 2.6% increase in LBM, while subjects consuming PL showed a 9.3% improvement in squat strength and a 0.1% change in LBM. Although parametric analysis was unable to demonstrate significant differences, magnitude based inferences indicated that the Δ change in 1-RM squat showed a likely benefit from PA on increasing lower body strength and a very likely benefit for increasing lean body mass (LBM).ConclusionsResults of this study suggest that a combination of a daily 750 mg PA ingestion, combined with a 4-day per week resistance training program for 8-weeks appears to have a likely benefit on strength improvement, and a very likely benefit on lean tissue accruement in young, resistance trained individuals.


Journal of The International Society of Sports Nutrition | 2007

Comparison of new forms of creatine in raising plasma creatine levels

Ralf Jäger; Roger C. Harris; Martin Purpura; Marc Francaux

BackgroundPrevious research has shown that plasma creatine levels are influenced by extracellular concentrations of insulin and glucose as well as by the intracellular creatine concentration. However, the form of creatine administered does not appear to have any effect although specific data on this is lacking. This study examined whether the administration of three different forms of creatine had different effects on plasma creatine concentrations and pharmacokinetics.MethodsSix healthy subjects (three female and three male subjects) participated in the study. Each subject was assigned to ingest a single dose of isomolar amounts of creatine (4.4 g) in the form of creatine monohydrate (CrM), tri-creatine citrate (CrC), or creatine pyruvate (CrPyr) using a balanced cross-over design. Plasma concentration curves, determined over eight hours after ingestion, were subject to pharmacokinetic analysis and primary derived data were analyzed by repeated measures ANOVA.ResultsMean peak concentrations and area under the curve (AUC) were significantly higher with CrPyr (17 and 14%, respectively) in comparison to CrM and CrC. Mean peak concentration and AUC were not significantly different between CrM and CrC. Despite the higher peak concentration with CrPyr there was no difference between the estimated velocity constants of absorption (ka) or elimination (kel) between the three treatments. There was no effect of treatment with CrPyr on the plasma pyruvate concentration.ConclusionThe findings suggest that different forms of creatine result in slightly altered kinetics of plasma creatine absorption following ingestion of isomolar (with respect to creatine) doses of CrM, CrC and CrPyr although differences in ka could not be detected due to the small number of blood samples taken during the absorption phase. Characteristically this resulted in higher plasma concentrations of creatine with CrPyr. Differences in bioavailability are thought to be unlikely since absorption of CrM is already close to 100%. The small differences in kinetics are unlikely to have any effect on muscle creatine elevation during periods of creatine loading.


Journal of The International Society of Sports Nutrition | 2008

The effects of creatine pyruvate and creatine citrate on performance during high intensity exercise

Ralf Jäger; Jan Metzger; Karin Lautmann; Vladimir Shushakov; Martin Purpura; Kurt-Reiner Geiss; Norbert Maassen

BackgroundA double-blind, placebo-controlled, randomized study was performed to evaluate the effect of oral creatine pyruvate (Cr-Pyr) and creatine citrate (Cr-Cit) supplementation on exercise performance in healthy young athletes.MethodsPerformance during intermittent handgrip exercise of maximal intensity was evaluated before (pretest) and after (posttest) 28 days of Cr-Pyr (5 g/d, n = 16), Cr-Cit (5 g/d, n = 16) or placebo (pla, 5 g/d, n = 17) intake. Subjects performed ten 15-sec exercise intervals, each followed by 45 sec rest periods.ResultsCr-Pyr (p < 0.001) and Cr-Cit (p < 0.01) significantly increased mean power over all intervals. Cr-Cit increased force during the first and second interval (p < 0.01) compared to placebo. The effect of Cr-Cit on force decreased over time and the improvement was not significant at the sixth and ninth interval, whereas Cr-Pyr significantly increased force during all intervals (p < 0.001). Cr-Pyr (p < 0.001) and Cr-Cit (p < 0.01) resulted in an increase in contraction velocity, whereas only Cr-Pyr intake significantly (p < 0.01) increased relaxation velocity. Oxygen consumption measured during rest periods significantly increased with Cr-Pyr (p < 0.05), whereas Cr-Cit and placebo intake did not result in significant improvements.ConclusionIt is concluded that four weeks of Cr-Pyr and Cr-Cit intake significantly improves performance during intermittent handgrip exercise of maximal intensity and that Cr-Pyr might benefit endurance, due to enhanced activity of the aerobic metabolism.


Journal of The International Society of Sports Nutrition | 2007

The effect of phosphatidylserine on golf performance

Ralf Jäger; Martin Purpura; Kurt-Reiner Geiss; Michael Weiß; Jochen Baumeister; Francesco Amatulli; Lars Schröder; Holger Herwegen

BackgroundA randomized, double-blind, placebo-controlled study was performed to evaluate the effect of oral phosphatidylserine (PS) supplementation on golf performance in healthy young golfers with handicaps of 15–40.MethodsPerceived stress, heart rate and the quality of the ball flight was evaluated before (pre-test) and after (post-test) 42 days of 200 mg per day PS (n = 10) or placebo (n = 10) intake in the form of a nutritional bar. Subjects teed-off 20 times aiming at a green 135 meters from the tee area.ResultsPS supplementation significantly increased (p < 0.05) the number of good ball flights (mean: pre-test 8.3 ± 3.5, post-test 10.1 ± 3.0), whereas placebo intake (mean: pre-test 7.8 ± 2.4, post-test 7.9 ± 3.6) had no effect. PS supplementation showed a trend towards improving perceived stress levels during teeing-off (mean: pre-test 5.8 ± 2.0, post-test 4.0 ± 2.0, p = 0.07), whereas stress levels remained unchanged in the placebo group (mean: pre-test: 5.1 ± 2.0, post-test: 5.1 ± 3.1). Supplementation did not influence mean heart rate in either group.ConclusionIt is concluded that six weeks of PS supplementation shows a statistically not significant tendency (p = 0.07) to improve perceived stress levels in golfers and significantly improves (p < 0.05) the number of good ball flights during tee-off which might result in improved golf scores.


Journal of The International Society of Sports Nutrition | 2010

The effects of acute and prolonged CRAM supplementation on reaction time and subjective measures of focus and alertness in healthy college students

Jay R. Hoffman; Nicholas A. Ratamess; Adam M Gonzalez; Noah A. Beller; Mattan W. Hoffman; Mark Olson; Martin Purpura; Ralf Jäger

BackgroundThe purpose of this study was to examine the effect of acute and prolonged (4-weeks) ingestion of a supplement designed to improve reaction time and subjective measures of alertness, energy, fatigue, and focus compared to placebo.MethodsNineteen physically-active subjects (17 men and 2 women) were randomly assigned to a group that either consumed a supplement (21.1 ± 0.6 years; body mass: 80.6 ± 9.4 kg) or placebo (21.3 ± 0.8 years; body mass: 83.4 ± 18.5 kg). During the initial testing session (T1), subjects were provided 1.5 g of the supplement (CRAM; α-glycerophosphocholine, choline bitartrate, phosphatidylserine, vitamins B3, B6, and B12, folic acid, L-tyrosine, anhydrous caffeine, acetyl-L-carnitine, and naringin) or a placebo (PL), and rested quietly for 10-minutes before completing a questionnaire on subjective feelings of energy, fatigue, alertness and focus (PRE). Subjects then performed a 4-minute quickness and reaction test followed by a 10-min bout of exhaustive exercise. The questionnaire and reaction testing sequence was then repeated (POST). Subjects reported back to the lab (T2) following 4-weeks of supplementation and repeated the testing sequence.ResultsReaction time significantly declined (p = 0.050) between PRE and POST at T1 in subjects consuming PL, while subjects under CRAM supplementation were able to maintain (p = 0.114) their performance. Significant performance declines were seen in both groups from PRE to POST at T2. Elevations in fatigue were seen for CRAM at both T1 and T2 (p = 0.001 and p = 0.000, respectively), but only at T2 for PL (p = 0.029). Subjects in CRAM maintained focus between PRE and POST during both T1 and T2 trials (p = 0.152 and p = 0.082, respectively), whereas significant declines in focus were observed between PRE and POST in PL at both trials (p = 0.037 and p = 0.014, respectively). No difference in alertness was seen at T1 between PRE and POST for CRAM (p = 0.083), but a significant decline was recorded at T2 (p = 0.005). Alertness was significantly lower at POST at both T1 and T2 for PL (p = 0.040 and p = 0.33, respectively). No differences in any of these subjective measures were seen between the groups at any time point.ConclusionResults indicate that acute ingestion of CRAM can maintain reaction time, and subjective feelings of focus and alertness to both visual and auditory stimuli in healthy college students following exhaustive exercise. However, some habituation may occur following 4-weeks of supplementation.


Journal of Strength and Conditioning Research | 2016

Interaction of Beta-Hydroxy-Beta-Methylbutyrate Free Acid and Adenosine Triphosphate on Muscle Mass, Strength, and Power in Resistance Trained Individuals.

Ryan P. Lowery; Jordan M. Joy; John Rathmacher; Shawn Baier; John C. Fuller; Mack C. Shelley; Ralf Jäger; Martin Purpura; Stephanie Mc Wilson; Jacob M. Wilson

Abstract Lowery, RP, Joy, JM, Rathmacher, JA, Baier, SM, Fuller, JC Jr, Shelley, MC II, Jäger, R, Purpura, M, Wilson, SMC, and Wilson, JM. Interaction of beta-hydroxy-beta-methylbutyrate free acid and adenosine triphosphate on muscle mass, strength, and power in resistance trained individuals. J Strength Cond Res 30(7): 1843–1854, 2016—Adenosine-5′-triphosphate (ATP) supplementation helps maintain performance under high fatiguing contractions and with greater fatigue recovery demands also increase. Current evidence suggests that the free acid form of &bgr;-hydroxy-&bgr;-methylbutyrate (HMB-FA) acts by speeding regenerative capacity of skeletal muscle after high-intensity or prolonged exercise. Therefore, we investigated the effects of 12 weeks of HMB-FA (3 g) and ATP (400 mg) administration on lean body mass (LBM), strength, and power in trained individuals. A 3-phase double-blind, placebo-, and diet-controlled study was conducted. Phases consisted of an 8-week periodized resistance training program (phase 1), followed by a 2-week overreaching cycle (phase 2), and a 2-week taper (phase 3). Lean body mass was increased by a combination of HMB-FA/ATP by 12.7% (p < 0.001). In a similar fashion, strength gains after training were increased in HMB-FA/ATP-supplemented subjects by 23.5% (p < 0.001). Vertical jump and Wingate power were increased in the HMB-FA/ATP-supplemented group compared with the placebo-supplemented group, and the 12-week increases were 21.5 and 23.7%, respectively. During the overreaching cycle, strength and power declined in the placebo group (4.3–5.7%), whereas supplementation with HMB-FA/ATP resulted in continued strength gains (1.3%). In conclusion, HMB-FA and ATP in combination with resistance exercise training enhanced LBM, power, and strength. In addition, HMB-FA plus ATP blunted the typical response to overreaching, resulting in a further increase in strength during that period. It seems that the combination of HMB-FA/ATP could benefit those who continuously train at high levels such as elite athletes or military personnel.

Collaboration


Dive into the Martin Purpura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin Wilborn

University of Mary Hardin–Baylor

View shared research outputs
Top Co-Authors

Avatar

Lem Taylor

University of Mary Hardin–Baylor

View shared research outputs
Researchain Logo
Decentralizing Knowledge